Log-Theta Lattice: Symmetries and Indeterminacies

Arata Minamide

RIMS, Kyoto University
September 3, 2021

Introduction

Hodge theater: A miniature model of conventional scheme theory that simulates a situation in which a "global multiplicative subspace" and "global generators" exist.

Introduction

Hodge theater: A miniature model of conventional scheme theory that simulates a situation in which a "global multiplicative subspace" and "global generators" exist.

Goal Give a "good description" of an obj. obtained by considering the arith. divisor det'd by the zero locus of the collection of theta values

$$
\left\{\underline{\underline{q}}_{\underline{j^{2}}}\right\}_{\underline{v} \in \underline{\mathbb{V}}^{\mathrm{bad}}}
$$

— where $\underline{\underline{q}} \stackrel{\text { def }}{=} q_{\underline{v}}^{1 / 2 l} ; j \in\left\{1,2, \ldots, l^{*} \stackrel{\text { def }}{=} \frac{l-1}{2}\right\}$ - that makes sense from the point of view of an "alien arithmetic holomorphic structure", i.e., the ring/scheme structure of a Hodge theater related to a given Hodge theater by means of a non-ring/scheme-theoretic "link".

Alien arithmetic holomorphic structure

k : a p-adic local field $(p \neq 2) \subseteq \bar{k}$: an algebraic closure $\mathcal{O}_{\bar{k}}$: the ring of integers $\supseteq \mathcal{O}_{\bar{k}}^{\times}$: the group of units

Alien arithmetic holomorphic structure

k : a p-adic local field $(p \neq 2) \subseteq \bar{k}$: an algebraic closure $\mathcal{O}_{\bar{k}}$: the ring of integers $\supseteq \mathcal{O}_{\bar{k}}^{\times}$: the group of units

Note: $2 \in \mathcal{O}_{\bar{k}}^{\times}$is defined as $1+1$ (by using \boxplus-structure)

Alien arithmetic holomorphic structure

k : a p-adic local field $(p \neq 2) \subseteq \bar{k}$: an algebraic closure $\mathcal{O}_{\bar{k}}$: the ring of integers $\supseteq \mathcal{O}_{\bar{k}}^{\times}$: the group of units

Note: $2 \in \mathcal{O}_{\bar{k}}^{\times}$is defined as $1+1$ (by using \boxplus-structure)
Let $\alpha: \mathcal{O}_{\bar{k}}^{\times} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}^{\times}$be an isom induced by an isom $\mathcal{O}_{\bar{k}} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}$ of rings

Alien arithmetic holomorphic structure

k : a p-adic local field $(p \neq 2) \subseteq \bar{k}$: an algebraic closure $\mathcal{O}_{\bar{k}}$: the ring of integers $\supseteq \mathcal{O}_{\bar{k}}^{\times}$: the group of units

Note: $2 \in \mathcal{O}_{\bar{k}}^{\times}$is defined as $1+1$ (by using \boxplus-structure)
Let $\alpha: \mathcal{O}_{\bar{k}}^{\times} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}^{\times}$be an isom induced by an isom $\mathcal{O}_{\bar{k}} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}$ of rings
$\Rightarrow 2 \mapsto 2$ (the respective \boxplus-structures are shared)

Alien arithmetic holomorphic structure

k : a p-adic local field $(p \neq 2) \subseteq \bar{k}$: an algebraic closure $\mathcal{O}_{\bar{k}}$: the ring of integers $\supseteq \mathcal{O}_{\bar{k}}^{\times}$: the group of units

Note: $2 \in \mathcal{O}_{\bar{k}}^{\times}$is defined as $1+1$ (by using \boxplus-structure)
Let $\alpha: \mathcal{O}_{\bar{k}}^{\times} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}^{\times}$be an isom induced by an isom $\mathcal{O}_{\bar{k}} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}$ of rings
$\Rightarrow 2 \mapsto 2$ (the respective \boxplus-structures are shared)
Let $\beta: \mathcal{O}_{\bar{k}}^{\times} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}^{\times}$be an isom of groups

Alien arithmetic holomorphic structure

k : a p-adic local field $(p \neq 2) \subseteq \bar{k}$: an algebraic closure $\mathcal{O}_{\bar{k}}$: the ring of integers $\supseteq \mathcal{O}_{\bar{k}}^{\times}$: the group of units

Note: $2 \in \mathcal{O}_{\bar{k}}^{\times}$is defined as $1+1$ (by using \boxplus-structure)
Let $\alpha: \mathcal{O}_{\bar{k}}^{\times} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}^{\times}$be an isom induced by an isom $\mathcal{O}_{\bar{k}} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}$ of rings
$\Rightarrow 2 \mapsto 2$ (the respective \boxplus-structures are shared)
Let $\beta: \mathcal{O}_{\bar{k}}^{\times} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}^{\times}$be an isom of groups
$\Rightarrow 2 \mapsto$? (the respective \boxplus-structures are not necessarily shared)

Alien arithmetic holomorphic structure

k : a p-adic local field $(p \neq 2) \subseteq \bar{k}$: an algebraic closure $\mathcal{O}_{\bar{k}}$: the ring of integers $\supseteq \mathcal{O}_{\bar{k}}^{\times}$: the group of units

Note: $2 \in \mathcal{O}_{\bar{k}}^{\times}$is defined as $1+1$ (by using \boxplus-structure)
Let $\alpha: \mathcal{O}_{\bar{k}}^{\times} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}^{\times}$be an isom induced by an isom $\mathcal{O}_{\bar{k}} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}$ of rings
$\Rightarrow 2 \mapsto 2$ (the respective \boxplus-structures are shared)
Let $\beta: \mathcal{O}_{\bar{k}}^{\times} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}^{\times}$be an isom of groups
$\Rightarrow 2 \mapsto$? (the respective \boxplus-structures are not necessarily shared)
The degree of "alienness" depends on information which are shared.

Mono-anabelian transport

$G_{k} \stackrel{\text { def }}{=} \operatorname{Gal}(\bar{k} / k) \curvearrowright \Lambda(\bar{k}) \stackrel{\text { def }}{=} \lim _{\underset{n}{ }}\left(\mathcal{O}_{\bar{k}}^{\times}\right)_{\text {tor }}[n](=\widehat{\mathbb{Z}}(1))$
Let $(G \curvearrowright M) \cong\left(G_{k} \curvearrowright \mathcal{O}_{\bar{k}}^{\times}\right)$. Write $\Lambda(M) \stackrel{\text { def }}{=} \lim _{n} M_{\text {tor }}[n]$.

Mono-anabelian transport
$G_{k} \stackrel{\text { def }}{=} \operatorname{Gal}(\bar{k} / k) \curvearrowright \Lambda(\bar{k}) \stackrel{\text { def }}{=} \lim _{n}\left(\mathcal{O}_{\bar{k}}^{\times}\right)_{\text {tor }}[n](=\widehat{\mathbb{Z}}(1))$
Let $(G \curvearrowright M) \cong\left(G_{k} \curvearrowright \mathcal{O}_{\bar{k}}^{\times}\right)$. Write $\Lambda(M) \stackrel{\text { def }}{=} \lim _{n} M_{\text {tor }}[n]$.

Theorem
${ }^{\exists}$ functorial algorithm

$$
G \quad \longmapsto \quad \mathcal{O}_{\bar{k}}^{\times}(G), \quad \Lambda(G)
$$

corresponding to $\mathcal{O}_{\bar{k}}^{\times}, \Lambda(\bar{k})$. Moreover, ${ }^{\exists}$ functorial algorithm

$$
(G \curvearrowright M) \longmapsto \text { the } \widehat{\mathbb{Z}}^{\times} \text {-orbit of } \Lambda(M) \xrightarrow{\sim} \Lambda(G)
$$

corresponding to the (nat'l) cyclotomic rigidity isom $\Lambda(\bar{k}) \xrightarrow{\sim} \Lambda\left(G_{k}\right)$.

Note: $G \curvearrowright\left(1 \rightarrow M_{\text {tor }}[n] \rightarrow M \xrightarrow{\times n} M \rightarrow 1\right)$ induces an embedding

$$
M \hookrightarrow \infty H^{1}(G, \Lambda(M)) \stackrel{\text { def }}{=} \underset{J \subseteq \underset{G: \text { open }}{\lim } H^{1}(J, \Lambda(M)) . ~}{\text { l }} \text {. }
$$

Note: $G \curvearrowright\left(1 \rightarrow M_{\text {tor }}[n] \rightarrow M \xrightarrow{\times n} M \rightarrow 1\right)$ induces an embedding

$$
M \hookrightarrow \infty H^{1}(G, \Lambda(M)) \stackrel{\text { def }}{=} \underset{J \subseteq \underset{G: \text { open }}{\lim } H^{1}(J, \Lambda(M)) . ~}{\text { l }} \text {. }
$$

In a similar vein, we have an embedding

$$
\mathcal{O}_{\bar{k}}^{\times}(G) \hookrightarrow H^{1}(G, \Lambda(G)) .
$$

In particular, by applying the previous theorem, we obtain

Note: $G \curvearrowright\left(1 \rightarrow M_{\text {tor }}[n] \rightarrow M \xrightarrow{\times n} M \rightarrow 1\right)$ induces an embedding

$$
M \hookrightarrow \infty H^{1}(G, \Lambda(M)) \stackrel{\text { def }}{=} \underset{J \subseteq \underset{G: \text { open }}{\lim } H^{1}(J, \Lambda(M)) . ~}{\text { l }} \text {. }
$$

In a similar vein, we have an embedding

$$
\mathcal{O}_{\bar{k}}^{\times}(G) \hookrightarrow \infty H^{1}(G, \Lambda(G)) .
$$

In particular, by applying the previous theorem, we obtain
Theorem
${ }^{\exists}$ functorial algorithm

$$
(G \curvearrowright M) \quad \longmapsto \quad \text { the } \widehat{\mathbb{Z}}^{\times} \text {-orbit of } M \xrightarrow{\sim} \mathcal{O}_{\bar{k}}^{\times}(G)
$$

corresponding to the (nat'l) Kummer isom $\mathcal{O}_{\bar{k}}^{\times} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}^{\times}\left(G_{k}\right)$.

Let $\gamma:\left(G_{k} \curvearrowright \mathcal{O}_{\bar{k}}^{\times}\right) \xrightarrow{\sim}\left(G_{k} \curvearrowright \mathcal{O}_{\bar{k}}^{\times}\right)$be an isom (of pairs).

Let $\gamma:\left(G_{k} \curvearrowright \mathcal{O}_{\bar{k}}^{\times}\right) \xrightarrow{\sim}\left(G_{k} \curvearrowright \mathcal{O}_{\bar{k}}^{\times}\right)$be an isom (of pairs). Then

$$
\begin{gathered}
\mathcal{O}_{\bar{k}}^{\times} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}^{\times} \\
\widehat{\mathbb{Z}} \times\left.\left.\curvearrowright^{\times}\right|_{\downarrow} ^{2} \stackrel{\widehat{\mathbb{Z}}^{\times} \curvearrowright}{ }\right|_{\downarrow} ^{2} \\
\mathcal{O}_{\bar{k}}^{\times}\left(G_{k}\right) \xrightarrow{\sim} \mathcal{O}_{\bar{k}}^{\times}\left(G_{k}\right)
\end{gathered}
$$

commutes. In particular, if we identify $\mathcal{O}_{\bar{k}}^{\times}$with $\mathcal{O}_{\bar{k}}^{\times}\left(G_{k}\right)$ via the nat'l Kummer isom, then

Let $\gamma:\left(G_{k} \curvearrowright \mathcal{O}_{\bar{k}}^{\times}\right) \xrightarrow{\sim}\left(G_{k} \curvearrowright \mathcal{O}_{\bar{k}}^{\times}\right)$be an isom (of pairs). Then

$$
\begin{gathered}
\mathcal{O}_{\bar{k}}^{\times} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}^{\times} \\
\widehat{\mathbb{Z}} \times\left.\left.^{\times} \curvearrowright\right|^{2} \xrightarrow{\widehat{\mathbb{Z}}^{\times} \curvearrowright}\right|^{2} \\
\mathcal{O}_{\bar{k}}^{\times}\left(G_{k}\right) \xrightarrow{\sim} \mathcal{O}_{\bar{k}}^{\times}\left(G_{k}\right)
\end{gathered}
$$

commutes. In particular, if we identify $\mathcal{O}_{\bar{k}}^{\times}$with $\mathcal{O}_{\bar{k}}^{\times}\left(G_{k}\right)$ via the nat'l Kummer isom, then
$\Rightarrow 2 \mapsto ? \in$ the $\left(\operatorname{Aut}\left(G_{k}\right), \widehat{\mathbb{Z}}^{\times}\right)$-orbit of 2

Let $\gamma:\left(G_{k} \curvearrowright \mathcal{O}_{\bar{k}}^{\times}\right) \xrightarrow{\sim}\left(G_{k} \curvearrowright \mathcal{O}_{\bar{k}}^{\times}\right)$be an isom (of pairs). Then

$$
\begin{gathered}
\mathcal{O}_{\bar{k}}^{\times} \xrightarrow{\sim} \mathcal{O}_{\bar{k}}^{\times} \\
\widehat{\mathbb{Z}} \times\left.\left.^{\times} \curvearrowright\right|_{\downarrow} \stackrel{\widehat{\mathbb{Z}}^{\times} \curvearrowright}{ }\right|_{\downarrow}{ }^{2} \\
\mathcal{O}_{\bar{k}}^{\times}\left(G_{k}\right) \xrightarrow{\sim} \mathcal{O}_{\bar{k}}^{\times}\left(G_{k}\right)
\end{gathered}
$$

commutes. In particular, if we identify $\mathcal{O}_{\bar{k}}^{\times}$with $\mathcal{O}_{\bar{k}}^{\times}\left(G_{k}\right)$ via the nat'l Kummer isom, then
$\Rightarrow 2 \mapsto ? \in$ the $\left(\operatorname{Aut}\left(G_{k}\right), \widehat{\mathbb{Z}}^{\times}\right)$-orbit of 2
These indeterminacies "Aut $\left(G_{k}\right)$ ", " $\widehat{\mathbb{Z}} \times$ " correspond to the indeterminacies (Ind1), (Ind2), respectively, appearing in IUT.

Mutiradiality

Let ${ }^{\dagger} \mathcal{H} \mathcal{T},{ }^{\dagger} \mathcal{H} \mathcal{T}$ be two copies of a given $\left[\Theta^{ \pm \mathrm{ell}} N F\right.$-]Hodge theater.
In IUT, we consider the Θ-link

$$
{ }^{\dagger} \mathcal{H} \mathcal{T} \longrightarrow{ }^{\ddagger} \mathcal{H} \mathcal{T}
$$

where the link is not arising from sch-/ring- theory like a "frobenius" $q \mapsto q^{N}\left(q \in \mathcal{O}_{k}, N>2\right)$.

Mutiradiality

Let ${ }^{\dagger} \mathcal{H} \mathcal{T},{ }^{\dagger} \mathcal{H} \mathcal{T}$ be two copies of a given $\left[\Theta^{ \pm e l l} N F\right.$-]Hodge theater.
In IUT, we consider the Θ-link

$$
{ }^{\dagger} \mathcal{H} \mathcal{T} \longrightarrow{ }^{\ddagger} \mathcal{H} \mathcal{T}
$$

where the link is not arising from sch-/ring- theory like a "frobenius"
$q \mapsto q^{N}\left(q \in \mathcal{O}_{k}, N>2\right)$.
Suppose: For $\square \in\{\dagger, \ddagger\},{ }^{\exists}$ functorial algorithm ${ }^{\square} \Xi$
${ }^{\square} \mathcal{H} \mathcal{T} \longmapsto$ data which are related to the \square - Θ-pilot object

Mutiradiality

Let ${ }^{\dagger} \mathcal{H} \mathcal{T},{ }^{\dagger} \mathcal{H} \mathcal{T}$ be two copies of a given $\left[\Theta^{ \pm e l l} N F\right.$-]Hodge theater.
In IUT, we consider the Θ-link

$$
{ }^{\dagger} \mathcal{H} \mathcal{T} \longrightarrow{ }^{\ddagger} \mathcal{H} \mathcal{T}
$$

where the link is not arising from sch-/ring- theory like a "frobenius"
$q \mapsto q^{N}\left(q \in \mathcal{O}_{k}, N>2\right)$.
Suppose: For $\square \in\{\dagger, \ddagger\},{ }^{\exists}$ functorial algorithm ${ }^{\square} \Xi$
${ }^{\square} \mathcal{H} \mathcal{T} \longmapsto$ data which are related to the \square - Θ-pilot object

Note: If the link is "isom" arising from sch-/ring- theory, then

$$
(\dagger \text {-data }) \xrightarrow{\sim}(\ddagger \text {-data })
$$

Since the link does not arise from sch-/ring- theory, so, a priori:

$$
(\dagger \text {-data }) \stackrel{\text { relation? }}{\longleftrightarrow}(\ddagger \text {-data })
$$

Since the link does not arise from sch-/ring- theory, so, a priori:

$$
(\dagger \text {-data }) \stackrel{\text { relation? }}{\longleftrightarrow}(\ddagger \text {-data })
$$

To relate (\dagger-data) to (\ddagger-data), we use

- a coric object " $=$ " an obj. arising from a given Hodge theater which we can "share" under the link

Since the link does not arise from sch-/ring- theory, so, a priori:

$$
(\dagger \text {-data }) \stackrel{\text { relation? }}{\longleftrightarrow}(\ddagger \text {-data })
$$

To relate (\dagger-data) to (\ddagger-data), we use

- a coric object " $=$ " an obj. arising from a given Hodge theater which we can "share" under the link

In IUT, we often use objects isomorphic to

$$
G_{k} ; \quad\left(G_{k} \curvearrowright \mathcal{O}_{\bar{k}}^{\times \mu} \stackrel{\text { def }}{=} \mathcal{O}_{\bar{k}}^{\times} /\left(\mathcal{O}_{\bar{k}}^{\times}\right)_{\mathrm{tor}}\right)
$$

as a coric object. For instance, how about the pair (isomorphic to)

$$
\left(G_{k} \curvearrowright \mathcal{O}_{\bar{k}}^{\triangleright} \stackrel{\text { def }}{=} \mathcal{O}_{\bar{k}} \backslash\{0\}\right) ?
$$

This pair may not be regarded as a coric object.

This pair may not be regarded as a coric object. In fact,

$$
\begin{aligned}
& \left({ }^{\dagger} G_{k} \curvearrowright{ }^{\dagger} \mathcal{O}_{k}^{\triangleright}\right) \xrightarrow{\sim}\left({ }^{\ddagger} G_{k} \curvearrowright{ }^{\ddagger} \mathcal{O}_{k}^{\triangleright}\right) \\
\Longrightarrow & { }^{\dagger} \mathcal{O}_{k}^{\triangleright} \xrightarrow{\mp}{ }^{\ddagger} \mathcal{O}_{k}^{\triangleright} \\
\Longrightarrow & { }^{\dagger} \mathbb{N} \xrightarrow{ } \widetilde{O}_{k}^{\dagger} \mathcal{O}^{\triangleright} \mathcal{O}_{k}^{\times} \xrightarrow{\sim}{ }^{\ddagger} \mathcal{O}_{k}^{\triangleright} /^{\ddagger} \mathcal{O}_{k}^{\times} \xrightarrow{ }{ }^{\dagger} \mathbb{N} ; 1 \mapsto 1
\end{aligned}
$$

hence, we can not consider the link like $q \mapsto q^{N}$.

This pair may not be regarded as a coric object. In fact,

$$
\begin{aligned}
& \left({ }^{\dagger} G_{k} \curvearrowright{ }^{\dagger} \mathcal{O} \stackrel{\triangleright}{k}\right) \xrightarrow{\sim}\left({ }^{\ddagger} G_{k} \curvearrowright{ }^{\ddagger} \mathcal{O}_{k}^{\triangleright}\right) \\
\Longrightarrow & { }^{\dagger} \mathcal{O}_{k}^{\triangleright} \xrightarrow{\ddagger} \mathcal{O}_{k}^{\triangleright} \\
\Longrightarrow & \left.{ }^{\dagger} \mathbb{N} \xrightarrow{ } \widetilde{O}^{\dagger} \mathcal{O}_{k}^{\triangleright}\right)^{\dagger} \mathcal{O}_{k}^{\times} \xrightarrow{\sim}{ }^{\ddagger} \mathcal{O}_{k}^{\triangleright} /^{\ddagger} \mathcal{O}_{k}^{\times} \xrightarrow{\sim}{ }^{\dagger} \mathbb{N} ; 1 \mapsto 1
\end{aligned}
$$

hence, we can not consider the link like $q \mapsto q^{N}$.
Suppose: For $\square \in\{\dagger, \ddagger\}$, ヨfunctorial algorithm

$$
\square_{\mathcal{H} \mathcal{T}} \longmapsto \text { a } \square \text {-coric object }{ }^{\square} C \text { (e.g., a top. gp }{ }^{\square} G \cong G_{k} \text {) }
$$

Then the multiradiality of the functorial algorithms ${ }^{\dagger} \Xi,{ }^{\ddagger} \Xi$ implies:

Then the multiradiality of the functorial algorithms ${ }^{\dagger} \Xi,{ }^{\ddagger} \Xi$ implies:

Then the multiradiality of the functorial algorithms ${ }^{\dagger} \Xi,{ }^{\ddagger} \Xi$ implies:

Then the multiradiality of the functorial algorithms ${ }^{\dagger} \Xi,{ }^{\ddagger} \Xi$ implies:

Some of notations

$\left(\bar{F} / F, E, l, \underline{C}_{K}, \underline{\mathbb{V}}, \underline{\mathbb{V}}^{\text {bad }}, \underline{\epsilon}\right)$: an initial Θ-data, where
l : a prime number ≥ 5
F : a number field such that $\sqrt{-1} \in F \hookrightarrow \bar{F}$: an alg. closure
E : an elliptic curve over F that has stable reduction at all $v \in \mathbb{V}(F)^{\text {non }}$
$K \stackrel{\text { def }}{=} F(E[l]) \supseteq F \supseteq F_{\text {mod }}$: the field of moduli of E
$\underline{\mathbb{V}} \subseteq \mathbb{V}(K)$: the image of a splitting of $\mathbb{V}(K) \rightarrow \mathbb{V}\left(F_{\bmod }\right)$
$\left(\Longrightarrow \underline{\mathbb{V}}=\underline{\mathbb{V}}^{\text {bad }} \cup \underline{\mathbb{V}}^{\text {good }}\right) \ldots$
$X \stackrel{\text { def }}{=} E \backslash\{o\}$: the hyperbolic curve over F assoc. to E
$\underline{X}_{K} \rightarrow X_{K} \stackrel{\text { def }}{=} X \times_{F} K$: a certain finite étale covering of degree l

We consider
if $\underline{v} \in \underline{\mathbb{V}}^{\text {bad }} \quad \Rightarrow \quad \underline{X}_{\underline{v}} \rightarrow \underline{X}_{\underline{v}} \stackrel{\text { def }}{=} \underline{X}_{K} \times_{K} K_{\underline{v}}$, i.e., " $\underline{X}^{\log } \rightarrow \underline{X}^{\log "}$
if $\underline{v} \in \underline{\mathbb{V}}^{\text {good }} \quad \Rightarrow \quad$ a certain finite étale covering $\underline{X}_{\underline{v}} \rightarrow \underline{X}_{\underline{v}}$

$$
\Pi_{\underline{v}} \stackrel{\text { def }}{=} \begin{cases}\pi_{1}^{\text {temp }}\left(\underline{X}_{\underline{v}}\right) & \underline{v} \in \underline{\mathbb{V}}^{\text {bad }} \\ \pi_{1}^{\text {et }}\left(\underline{X}_{\underline{v}}\right) & \underline{v} \in \underline{\mathbb{V}}^{\text {good }}, \text { finite }\end{cases}
$$

$\bar{F}_{\underline{v}}$: the algebraic closure of $K_{\underline{v}}$ det'd by \underline{v} and \bar{F} (up to conj.) $G_{\underline{v}} \stackrel{\text { def }}{=} \operatorname{Gal}\left(\bar{F}_{\underline{v}} / K_{\underline{v}}\right)$: the absolute Galois group of $K_{\underline{v}}$ if $\underline{v} \in \underline{\mathbb{V}}^{\text {non }} \Rightarrow \mathcal{O}_{\bar{F}_{\underline{v}}}$: the ring of integers $\supseteq \mathcal{O} \stackrel{\mathcal{F}}{\underline{v}}_{\triangleright} \stackrel{\text { def }}{=} \mathcal{O}_{\bar{F}_{\underline{v}}} \backslash\{0\}$

$$
\supseteq \mathcal{O} \frac{\times}{\bar{F}_{\underline{v}}}: \text { the group of units } \rightarrow \mathcal{O}_{\overline{F_{\underline{v}}}}^{\times \mu} \stackrel{\text { def }}{=} \mathcal{O}_{\overline{F_{\underline{v}}}}^{\times} / \mathcal{O}_{\overline{F_{\underline{v}}}}^{\mu}
$$

Theta monoid $\mathcal{O}_{\overline{F_{\underline{v}}}}^{\times} \cdot \underline{\underline{\Theta}}_{\underline{v}}^{\mathbb{N}}$

Let us recall the Frobenius-like/étale-like theta monoids at $\underline{v} \in \mathbb{V}^{\text {bad }}$ and the Kummer isomorphisms bewteen them:

Theta monoid $\mathcal{O}_{\bar{F}_{\underline{v}}}^{\times} \cdot \underline{\underline{\Theta}}_{\underline{v}}^{\mathbb{N}}$
Let us recall the Frobenius-like/étale-like theta monoids at $\underline{v} \in \mathbb{V}^{\text {bad }}$ and the Kummer isomorphisms bewteen them:

$$
\Psi_{\mathcal{F} \Theta}\left({ }^{\dagger} \underline{\underline{\mathcal{F}}}_{\underline{v}}\right) \xrightarrow{\sim}\left(\Psi _ { \mathrm { env } } \left(\mathbb { M } _ { * } ^ { \Theta } \left({ }_{\left.\left.\left.\underline{\dagger} \underline{\underline{\mathcal{F}}}_{\underline{v}}\right)\right) \xrightarrow{\sim} \Psi_{\mathrm{env}}\left(\mathbb{M}_{*}^{\Theta}\left({ }^{\dagger} \Pi_{\underline{v}}\right)\right) \underset{\leftarrow}{\leftarrow}\right) \Psi_{\Theta}\left({ }^{\dagger} \Pi_{\underline{v}}\right)}\right.\right.\right.
$$

$\infty \Psi_{\mathcal{F}}\left({ }^{\dagger} \underline{\underline{\mathcal{F}}}_{\underline{v}}\right) \xrightarrow{\sim}\left(\infty \Psi_{\text {env }}\left(\mathbb{M}_{*}^{\Theta}\left({ }_{\underline{\underline{\mathcal{F}}}}^{\underline{v}}\right)\right) \xrightarrow{\sim}{ }_{\infty} \Psi_{\mathrm{env}}\left(\mathbb{M}_{*}^{\Theta}\left({ }^{\dagger} \Pi_{\underline{v}}\right)\right) \underset{\sim}{\sim}\right)_{\infty} \Psi_{\Theta}\left({ }^{\dagger} \Pi_{\underline{v}}\right)$
(cf. the cyclotomic rigidity of mono-theta environments).
We consider the following radial environment:

Theta monoid $\mathcal{O}_{\bar{F}_{\underline{v}}}^{\times} \cdot \underline{\underline{\Theta}}_{\underline{v}}^{\mathbb{N}}$
Let us recall the Frobenius-like/étale-like theta monoids at $\underline{v} \in \mathbb{V}^{\text {bad }}$ and the Kummer isomorphisms bewteen them:

$$
\Psi_{\mathcal{F} \Theta}\left({ }^{\dagger} \underline{\underline{\mathcal{F}}}_{\underline{v}}\right) \xrightarrow{\sim}\left(\Psi _ { \mathrm { env } } \left(\mathbb { M } _ { * } ^ { \Theta } \left({ }_{\left.\left.\left.\underline{\dagger} \underline{\underline{\mathcal{F}}}_{\underline{v}}\right)\right) \xrightarrow{\sim} \Psi_{\mathrm{env}}\left(\mathbb{M}_{*}^{\Theta}\left({ }^{\dagger} \Pi_{\underline{v}}\right)\right) \underset{\leftarrow}{\leftarrow}\right) \Psi_{\Theta}\left({ }^{\dagger} \Pi_{\underline{v}}\right)}\right.\right.\right.
$$

$\infty \Psi_{\mathcal{F} \Theta}\left({ }^{\dagger} \underline{\underline{\mathcal{F}}}_{\underline{v}}\right) \xrightarrow{\sim}\left(\infty \Psi_{\text {env }}\left(\mathbb{M}_{*}^{\Theta}\left({ }^{\dagger} \underline{\underline{\mathcal{F}}}_{\underline{v}}\right) \xrightarrow{\sim}{ }_{\infty} \Psi_{\mathrm{env}}\left(\mathbb{M}_{*}^{\Theta}\left({ }^{\dagger} \Pi_{\underline{v}}\right)\right) \underset{\sim}{\sim}\right)_{\infty} \Psi_{\Theta}\left({ }^{\dagger} \Pi_{\underline{v}}\right)\right.$
(cf. the cyclotomic rigidity of mono-theta environments).
We consider the following radial environment:
\mathcal{C} (coric category) $-\mathrm{Obj}:\left(G \curvearrowright \overline{\mathcal{O}}_{\underline{v}}^{\times \mu}\right) \cong\left(G_{\underline{v}} \curvearrowright \mathcal{O}_{\bar{F}_{\underline{v}}}^{\times \mu},\left\{\mathcal{I}_{H}^{\kappa}\right\}_{H \subseteq G_{\underline{v}}}\right)$
Hom: an isom between " $\left(G \curvearrowright \overline{\mathcal{O}}_{\underline{v}}^{\times \mu}\right)$ " that is comp. w/ " $\left\{\mathcal{I}_{H}^{\kappa}\right\}_{H \subseteq G_{\underline{v}}}$ "
\mathcal{R} (radial category) - Obj: data consists of the following:
$\left(\mathrm{a}_{\text {ét }}\right)^{\dagger} \Pi_{\underline{v}} \cong \Pi_{\underline{v}}$;
(bét) the étale-like cyclotome ${ }^{\dagger} \Pi_{\underline{v}} \curvearrowright\left(l \cdot \Delta_{\Theta}\right)\left({ }^{\dagger} \Pi_{\underline{v}}\right)$;
(cét $)$ the étale-like unit groups ${ }^{\dagger} \Pi_{\underline{v}}\left(\rightarrow^{\dagger} G_{\underline{v}}\right) \curvearrowright\left(\mathcal{O}_{\bar{k}\left(\Pi_{\underline{v}}\right)}^{\times} \rightarrow \mathcal{O}_{\bar{k}\left(\Pi_{\underline{v}}\right)}^{\times \mu}\right)$;
(dét) the étale-like theta monoids $\Psi_{\Theta}\left({ }^{\dagger} \Pi_{\underline{v}}\right), \infty \Psi_{\Theta}\left({ }^{\dagger} \Pi_{\underline{v}}\right)$;
($e_{e ́ t}$) the canonical splitting

$$
\left\{\left(\mathcal{O}_{\bar{k}\left(\dagger \Pi_{\underline{v}}\right)}^{\times} \cdot \infty \underline{\underline{\theta}}^{\iota}\left({ }^{\dagger} \Pi_{\underline{v}}\right)\right) / \mathcal{O}_{\bar{k}\left(\dagger \Pi_{\underline{v}}\right)}^{\mu}=\mathcal{O}_{\bar{k}\left(\dagger \Pi_{\underline{v}}\right)}^{\times \boldsymbol{\mu}} \times\left(\infty \underline{\underline{\theta}}^{\iota}\left({ }^{\dagger} \Pi_{\underline{v}}\right) / \mathcal{O}_{\bar{k}\left(\dagger \Pi_{\underline{v}}\right)}^{\mu}\right)\right\}_{(\iota, D)} ;
$$

(aenv) the mono-theta environment $\mathbb{M}_{*}^{\Theta} \stackrel{\text { def }}{=} \mathbb{M}_{*}^{\Theta}\left({ }^{\dagger} \Pi_{\underline{v}}\right)$; (benv) the exterior cyclotome ${ }^{\dagger} \Pi_{\underline{v}} \curvearrowright \Pi_{\mu}\left(\mathbb{M}_{*}^{\Theta}\right)$;
(cenv) the unit groups ${ }^{\dagger} \Pi_{\underline{v}}\left(\rightarrow^{\dagger} G_{\underline{v}}\right) \curvearrowright\left(\overline{\mathcal{O}}_{\underline{v}}^{\times}\left(\mathbb{M}_{*}^{\Theta}\right) \rightarrow \overline{\mathcal{O}}_{\underline{v}}^{\times \mu}\left(\mathbb{M}_{*}^{\Theta}\right)\right)$;
(denv) the mono-theta theoretic theta monoids $\Psi_{\Theta}\left(\mathbb{M}_{*}^{\Theta}\right), \infty \Psi_{\Theta}\left(\mathbb{M}_{*}^{\Theta}\right)$;
(env) the canonical splitting
$\left\{\left(\overline{\mathcal{O}}_{\underline{v}}^{\times}\left(\mathbb{M}_{*}^{\Theta}\right) \cdot \infty \underline{\underline{\theta}}^{\iota}\left(\mathbb{M}_{*}^{\Theta}\right)\right) / \overline{\mathcal{O}}_{\underline{v}}^{\mu}\left(\mathbb{M}_{*}^{\Theta}\right)=\overline{\mathcal{O}}_{\underline{v}}^{\times \mu}\left(\mathbb{M}_{*}^{\Theta}\right) \times\left(\infty \underline{\theta}^{\iota}\left(\mathbb{M}_{*}^{\Theta}\right) / \overline{\mathcal{O}}_{\underline{v}}^{\mu}\left(\mathbb{M}_{*}^{\Theta}\right)\right)\right\}_{(\iota, D)}$
(f) the cyclotomic rigidity isom. $\left(\mathrm{b}_{\text {et }}\right) \xrightarrow{\sim}\left(\mathrm{b}_{\text {env }}\right)\left(\mathrm{cf} .\left(\mathrm{a}_{\text {env }}\right)\right)$;
(g) $\left(\mathrm{c}_{\text {ét }}\right) \xrightarrow{\sim}\left(\mathrm{c}_{\text {env }}\right),\left(\mathrm{d}_{\text {ét }}\right) \xrightarrow{\sim}\left(\mathrm{d}_{\text {env }}\right),\left(\mathrm{e}_{\text {ét }}\right) \xrightarrow{\sim}\left(\mathrm{e}_{\text {env }}\right)(\mathrm{cf} .(\mathrm{f}))$;
(h) $\left(G \curvearrowright \overline{\mathcal{O}}_{\underline{v}}^{\times \mu}\right) \cong\left(G_{\underline{v}} \curvearrowright \mathcal{O}_{\overline{F_{\underline{v}}}}^{\times \mu},\left\{\mathcal{I}_{H}^{\kappa}\right\}_{H \subseteq G_{\underline{v}}}\right)$;
(i) an isom. $\left(G_{\underline{v}} \curvearrowright \mathcal{O}_{\bar{k}\left(\Pi_{\underline{v}}\right)}^{\times \mu}\right) \xrightarrow{\sim}\left(G \curvearrowright \overline{\mathcal{O}}_{\underline{v}}^{\times \mu}\right)$ (cf. (cét $)$, (h) $)$;
(j) the diagram

$$
\Pi_{\boldsymbol{\mu}}\left(\mathbb{M}_{*}^{\Theta}\right) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\sim} \overline{\mathcal{O}}_{\underline{v}}^{\mu}\left(\mathbb{M}_{*}^{\Theta}\right) \stackrel{(\mathrm{g})}{\rightarrow} \mathcal{O}_{\bar{k}\left(\Pi_{\underline{v}}\right)}^{\mu} \xrightarrow{\text { zero }} \mathcal{O}_{\bar{k}\left(\Pi_{\underline{v}}\right)}^{\times \mu} \xrightarrow{\stackrel{(\mathrm{i})}{\sim}} \overline{\mathcal{O}}_{\underline{v}}^{\times \mu} .
$$

Hom: omit
(h) $\left(G \curvearrowright \overline{\mathcal{O}}_{\underline{v}}^{\times \mu}\right) \cong\left(G_{\underline{v}} \curvearrowright \mathcal{O}_{\bar{F}_{\underline{v}}}^{\times \mu},\left\{\mathcal{I}_{H}^{\kappa}\right\}_{H \subseteq G_{\underline{v}}}\right)$;
(i) an isom. $\left(G_{\underline{v}} \curvearrowright \mathcal{O}_{\bar{k}\left(\Pi_{\underline{v}}\right)}^{\times \mu}\right) \xrightarrow{\sim}\left(G \curvearrowright \overline{\mathcal{O}}_{\underline{v}}^{\times \mu}\right)$ (cf. (cetet), (h));
(j) the diagram

$$
\Pi_{\mu}\left(\mathbb{M}_{*}^{\Theta}\right) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\sim} \overline{\mathcal{O}}_{\underline{v}}^{\mu}\left(\mathbb{M}_{*}^{\Theta}\right) \xrightarrow{(\mathrm{g})} \xrightarrow{\sim} \mathcal{O}_{\bar{k}\left(\dagger \Pi_{\underline{v}}\right)}^{\mu} \xrightarrow{\text { zero }} \mathcal{O}_{\bar{k}\left(\Pi_{\underline{v}}\right)}^{\times \mu} \xrightarrow{(\mathrm{i})} \overline{\mathcal{O}}_{\underline{v}}^{\times \mu} .
$$

Hom: omit
\Longrightarrow Since the functor $\Phi: \mathcal{R} \rightarrow \mathcal{C}$ obtained by "forget. all except (h)" is full, we obtain a multiradial environment $(\mathcal{R}, \mathcal{C}, \Phi)$.

In particular, [the "functor" det'd by] the algorithm

$$
{ }^{\dagger} \Pi_{v} \mapsto \Psi_{\Theta}\left({ }^{\dagger} \Pi_{v}\right) \xrightarrow{\sim} \Psi_{\Theta}\left(\mathbb{M}_{*}^{\Theta}\right), \quad \infty \Psi_{\Theta}\left({ }^{\dagger} \Pi_{v}\right) \xrightarrow{\sim} \infty \Psi_{\Theta}\left(\mathbb{M}_{*}^{\Theta}\right)
$$

- whose output data are appearing in the above Kummer isoms

$$
\Psi_{\mathcal{F}^{\Theta}}\left(\underline{\underline{\mathcal{F}}} \underline{\underline{v}}_{\dagger}\right) \xrightarrow{\sim} \Psi_{\Theta}\left({ }^{\dagger} \Pi_{\underline{v}}\right), \quad \infty \Psi_{\mathcal{F}^{\Theta}}\left(\underline{\underline{\mathcal{F}}} \underline{\underline{v}}_{\dagger}\right) \xrightarrow{\sim} \infty \Psi_{\Theta}\left({ }^{\dagger} \Pi_{\underline{v}}\right)
$$

— may be regarded as a multiradial algorithm.

Gaussian monoid $\left.\mathcal{O}_{\overline{F_{\underline{v}}}}^{\times} \cdot\left(\left\{\underline{\underline{q^{v}}}\right\}^{j^{2}}\right\}_{j=1,2, \ldots, l^{*}}\right)^{\mathbb{N}}$

Let us recall the étale-like theta monoids at $\underline{v} \in \mathbb{V}^{\text {bad }}$

Gaussian monoid $\mathcal{O} \overline{\bar{F}}_{\underline{v}} \cdot\left(\left\{\underline{\underline{q}}_{\underline{v}}^{j^{2}}\right\}_{j=1,2, \ldots, l^{*}}\right)^{\mathbb{N}}$
Let us recall the étale-like theta monoids at $\underline{v} \in \mathbb{V}^{\text {bad }}$

$$
\begin{gathered}
\Phi_{\text {gau }}\left({ }^{\dagger} \Pi_{\underline{v}}\right) \stackrel{\text { def }}{=}\left\{\left(\mathcal{O}_{\bar{k}\left({ }^{\dagger} \Pi_{\underline{v}}\right)}^{\times}\right)_{\left\langle T^{*}\right\rangle} \cdot \xi^{\mathbb{N}} \subseteq \prod_{|t| \in T^{*}}\left(\mathcal{O}_{\bar{k}\left({ }^{\dagger} \Pi_{\underline{v}}\right)}\right)_{|t|}\right\}_{\xi} \\
\infty \Phi_{\text {gau }}\left({ }^{\dagger} \Pi_{\underline{v}}\right) \stackrel{\text { def }}{=}\left\{\left(\mathcal{O}_{\bar{k}\left({ }^{\dagger} \Pi_{\underline{v}}\right)}^{\times}\right)_{\left\langle T^{*}\right\rangle} \cdot \xi^{\mathbb{Q} \geq 0} \subseteq \prod_{|t| \in T^{*}}\left(\mathcal{O}_{\bar{k}\left({ }^{\dagger} \Pi_{\underline{v}}\right)}\right)_{|t|}\right\}_{\xi}
\end{gathered}
$$

- where $\xi \in \prod_{|t| \in T^{*}}\left(\mathcal{O}_{\bar{k}\left(\dagger \Pi_{\underline{v}}\right)}^{\triangleright}\right)_{|t|}$ is a valued-profile corr. to

$$
\left(\zeta_{2 l}^{i_{1}} \cdot \underline{\underline{q}}_{\underline{1^{2}}}^{1^{2}}, \zeta_{2 l}^{i_{2}} \cdot \underline{q}_{\underline{v}}^{2^{2}}, \ldots, \zeta_{2 l}^{i_{2} *} \cdot \underline{\underline{q}}_{\underline{v}}^{\left(l^{*}\right)^{2}}\right)
$$

— where $\zeta_{2 l}^{i_{j}}$ is a generator of $\mu_{2 l}$.

Obstacle (1): The (output) "theta values" is not multiradial.

Obstacle (1): The (output) "theta values" is not multiradial.

Note: We can not share $\left(G_{k} \curvearrowright \mathcal{O} \stackrel{\triangleright}{k}\right)$ under the Θ-link.

Obstacle (1): The (output) "theta values" is not multiradial.

Note: We can not share $\left(G_{k} \curvearrowright \mathcal{O} \stackrel{\perp}{k}\right)$ under the Θ-link.
\Rightarrow We introduce the notion of a log-shell - which we can share under the Θ-link - and a modified ver. of "theta values" which acts on it.

Obstacle (1): The (output) "theta values" is not multiradial.

Note: We can not share $\left(G_{k} \curvearrowright \mathcal{O} \stackrel{\triangleright}{k}\right)$ under the Θ-link.
\Rightarrow We introduce the notion of a log-shell - which we can share under the Θ-link - and a modified ver. of "theta values" which acts on it.

Definition
We refer to

$$
\mathcal{I} \stackrel{\text { def }}{=}(2 p)^{-1} \cdot \log _{\bar{k}}\left(\mathcal{O}_{k}^{\times}\right) \subseteq k=\{0\} \cup\left(\mathcal{O}_{k}\right)^{\mathrm{gp}}
$$

— where $\log _{\bar{k}}: \mathcal{O}_{\bar{k}}^{\times} \rightarrow \bar{k}$ is the p-adic logarithm - as the log-shell.

Obstacle (1): The (output) "theta values" is not multiradial.

Note: We can not share $\left(G_{k} \curvearrowright \mathcal{O} \stackrel{\perp}{k}\right)$ under the Θ-link.
\Rightarrow We introduce the notion of a log-shell - which we can share under the Θ-link - and a modified ver. of "theta values" which acts on it.

Definition
We refer to

$$
\mathcal{I} \stackrel{\text { def }}{=}(2 p)^{-1} \cdot \log _{\bar{k}}\left(\mathcal{O}_{k}^{\times}\right) \subseteq k=\{0\} \cup\left(\mathcal{O}_{k}\right)^{\mathrm{gp}}
$$

— where $\log _{\bar{k}}: \mathcal{O}_{\bar{k}}^{\times} \rightarrow \bar{k}$ is the p-adic logarithm - as the log-shell.

Note: $\mathcal{O}_{k}^{\times \mu} \otimes \mathbb{Q} \xrightarrow{\sim} \mathcal{I} \otimes \mathbb{Q} ; \quad \mathcal{O}_{k}^{\times \mu} \otimes(2 p)^{-1} \xrightarrow{\sim} \mathcal{I}$

Obstacle (2): To define $\log _{\bar{k}}$, we need the ring structure of k.

Obstacle (2): To define $\log _{\bar{k}}$, we need the ring structure of k. \Rightarrow We use an infinite chain of the log-link:

$$
\mathfrak{l o g}: \mathcal{O}_{\bar{k}}^{\triangleright} \supseteq \mathcal{O}_{\bar{k}}^{\times} \rightarrow \mathcal{O}_{\bar{k}}^{\times} \otimes \mathbb{Q} \stackrel{\log _{\bar{k}}}{\rightarrow} \bar{k} \supseteq \mathcal{O}_{\bar{k}}^{\triangleright}
$$

Obstacle (2): To define $\log _{\bar{k}}$, we need the ring structure of k.
\Rightarrow We use an infinite chain of the log-link:

$$
\mathfrak{l o g}: \mathcal{O}_{\bar{k}}^{\triangleright} \supseteq \mathcal{O}_{\bar{k}}^{\times} \rightarrow \mathcal{O}_{\bar{k}}^{\times} \otimes \mathbb{Q} \stackrel{\log _{\bar{k}}}{\rightarrow} \bar{k} \supseteq \mathcal{O}_{\bar{k}}^{\triangleright}
$$

Obstacle (3): The Kummer isom are not compatible w/ the log-link.

Obstacle (2): To define $\log _{\bar{k}}$, we need the ring structure of k.
\Rightarrow We use an infinite chain of the log-link:

$$
\mathfrak{l o g}: \mathcal{O}_{\bar{k}}^{\triangleright} \supseteq \mathcal{O}_{\bar{k}}^{\times} \rightarrow \mathcal{O}_{\bar{k}}^{\times} \otimes \mathbb{Q} \stackrel{\log _{\bar{k}}}{\rightarrow} \bar{k} \supseteq \mathcal{O}_{\bar{k}}^{\triangleright}
$$

Obstacle (3): The Kummer isom are not compatible w/ the log-link.

$$
\begin{aligned}
& \mathcal{O}_{\bar{k}}^{\triangleright}\left(\Pi_{\underline{\underline{X}}}^{\mathrm{tp}}\right) \sim \\
& \text { Kum } \uparrow \mathcal{O} \stackrel{\triangleright}{k}\left(\Pi_{\underline{\underline{X}}}^{\mathrm{tp}}\right) \\
& \uparrow_{\bar{k}}^{\triangleright} \xrightarrow{\text { Kum }} \\
& \\
& \mathcal{O}_{\bar{k}}^{\triangleright}
\end{aligned}
$$

\Rightarrow We use inclusions $\mathcal{O}_{k}^{\triangleright} \subseteq \mathcal{I} \supseteq \log _{\bar{k}}\left(\mathcal{O}_{k}^{\times}\right)$. In particular, " $\mathcal{I}\left(\Pi_{\underline{\underline{X}}}^{\mathrm{tp}}\right)$ " contains the images of Kum assoc. to both the dom/codom of log ("upper semi-commutativity"). \Rightarrow (Ind3)

Theorem (An Approximate Statement of the Main Theorem of IUT)
For a general initial Θ-data $\left(\bar{F} / F, E, l, \underline{C}_{K}, \underline{\mathbb{V}}, \underline{\mathbb{V}}^{\text {bad }}, \underline{\epsilon}\right)$, ${ }^{\exists}$ suitable multiradial algorithm whose output data consist of the following three objects \curvearrowleft (Ind1), (Ind2), (Ind3)

- the collection of log-shells $\left\{\mathcal{I}_{\underline{v}}\right\}_{\underline{v} \in \underline{\mathbb{V}}}$;
- the theta values $\left\{\underline{\underline{q}}_{\underline{j^{2}}}\right\} \curvearrowright \prod_{\underline{v} \in \underline{\mathbb{V}}} \mathcal{I}_{\underline{v}}$;
- the number field $F_{\bmod } \curvearrowright \prod_{\underline{v} \in \underline{\mathbb{V}}}\left(\mathcal{I}_{\underline{v}} \otimes \mathbb{Q}\right)$.

Moreover, this alg'm is compatible $w /$ the Θ-link ${ }^{\dagger} \mathcal{H} \mathcal{T} \longrightarrow{ }^{\ddagger} \mathcal{H} \mathcal{T}$.

Log-links

$\underline{v} \in \underline{\mathbb{V}}^{\text {non }}$: a place lying over $p \in \mathbb{Z}$
${ }^{\dagger} \mathfrak{F}=\left\{{ }^{\dagger} \mathcal{F}_{\underline{w}}\right\}_{\underline{w} \in \underline{\mathbb{V}}}$: an \mathcal{F}-prime-strip. In particular,

$$
{ }^{\dagger} \mathcal{F}_{\underline{v}} \approx\left({ }^{\dagger} \Pi_{\underline{v}} \curvearrowright{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\triangleright}\right) .
$$

Log-links

$\underline{v} \in \underline{\mathbb{V}}^{\text {non }}$: a place lying over $p \in \mathbb{Z}$
${ }^{\dagger} \mathfrak{F}=\left\{{ }^{\dagger} \mathcal{F}_{\underline{w}}\right\}_{\underline{w} \in \underline{\mathbb{V}}}:$ an \mathcal{F}-prime-strip. In particular,

$$
{ }^{\dagger} \mathcal{F}_{\underline{v}} \approx\left({ }^{\dagger} \Pi_{\underline{v}} \curvearrowright{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\triangleright}\right) .
$$

Then, by applying the theory of [AbsTopIII], we can reconstruct

$$
\text { the natural field structure on }\left({ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\triangleright}\right)^{\mathrm{gp}} \cup\{0\} \text {. }
$$

Log-links

$\underline{v} \in \underline{\mathbb{V}}^{\text {non }}$: a place lying over $p \in \mathbb{Z}$
${ }^{\dagger} \mathfrak{F}=\left\{{ }^{\dagger} \mathcal{F}_{\underline{w}}\right\}_{\underline{w} \in \underline{\mathbb{V}}}:$ an \mathcal{F}-prime-strip. In particular,

$$
{ }^{\dagger} \mathcal{F}_{\underline{v}} \approx\left({ }^{\dagger} \Pi_{\underline{v}} \curvearrowright{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\triangleright}\right) .
$$

Then, by applying the theory of [AbsTopIII], we can reconstruct

$$
\text { the natural field structure on }\left({ }^{\dagger} \overline{\mathrm{O}}_{\underline{v}}^{\triangleright}\right)^{\mathrm{gp}} \cup\{0\} \text {. }
$$

\Longrightarrow We can define p-adic logarithm on ${ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times} \otimes \mathbb{Q}$.

Log-links

$\underline{v} \in \underline{\mathbb{V}}^{\text {non }}:$ a place lying over $p \in \mathbb{Z}$
${ }^{\dagger} \mathfrak{F}=\left\{{ }^{\dagger} \mathcal{F}_{\underline{w}}\right\}_{\underline{w} \in \underline{\mathbb{V}}}:$ an \mathcal{F}-prime-strip. In particular,

$$
{ }^{\dagger} \mathcal{F}_{\underline{v}} \approx\left({ }^{\dagger} \Pi_{\underline{v}} \curvearrowright{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\triangleright}\right) .
$$

Then, by applying the theory of [AbsTopIII], we can reconstruct

$$
\text { the natural field structure on }\left({ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\triangleright}\right)^{\mathrm{gp}} \cup\{0\} \text {. }
$$

\Longrightarrow We can define p-adic logarithm on ${ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times} \otimes \mathbb{Q}$.
\Longrightarrow We obtain a new field str. on ${ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times} \otimes \mathbb{Q}$ s.t. " \boxtimes " corr. to " \boxplus ".

Log-links

$\underline{v} \in \underline{\mathbb{V}}^{\text {non }}$: a place lying over $p \in \mathbb{Z}$
${ }^{\dagger} \mathfrak{F}=\left\{{ }^{\dagger} \mathcal{F}_{\underline{w}}\right\}_{\underline{w} \in \underline{\mathbb{V}}}$: an \mathcal{F}-prime-strip. In particular,

$$
{ }^{\dagger} \mathcal{F}_{\underline{v}} \approx\left({ }^{\dagger} \Pi_{\underline{v}} \curvearrowright{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\triangleright}\right) .
$$

Then, by applying the theory of [AbsTopIII], we can reconstruct

$$
\text { the natural field structure on }\left({ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\triangleright}\right)^{\mathrm{gp}} \cup\{0\} \text {. }
$$

\Longrightarrow We can define p-adic logarithm on ${ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times} \otimes \mathbb{Q}$.
\Longrightarrow We obtain a new field str. on ${ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times} \otimes \mathbb{Q}$ s.t. " \boxtimes " corr. to " \boxplus ".
Note: $\quad \mathcal{O}_{\bar{k}}^{\times} \otimes \mathbb{Q} \xrightarrow{\sim} \bar{k} ; \boxtimes \rightsquigarrow \boxplus$

Write

$$
\widetilde{k}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right) \stackrel{\text { def }}{=} \dagger \overline{\mathcal{O}}_{\underline{v}}^{\times} \otimes \mathbb{Q}
$$

for this new field.

Write

$$
\widetilde{k}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right) \stackrel{\text { def }}{=} \dagger \overline{\mathcal{O}}_{\underline{v}}^{\times} \otimes \mathbb{Q}
$$

for this new field. Thus, we obtain

$$
\mathfrak{l o g}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right) \stackrel{\text { def }}{=}\left({ }^{\dagger} \Pi_{\underline{v}} \curvearrowright \mathcal{O}_{\widetilde{k}\left(\mathcal{F}_{\underline{v}}\right)}^{\triangleright}\right)\left(\cong{ }^{\dagger} \mathcal{F}_{\underline{v}}\right) .
$$

Write

$$
\widetilde{k}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right) \stackrel{\text { def }}{=} \dagger \overline{\mathcal{O}}_{\underline{v}}^{\times} \otimes \mathbb{Q}
$$

for this new field. Thus, we obtain

$$
\mathfrak{l o g}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right) \stackrel{\text { def }}{=}\left({ }^{\dagger} \Pi_{\underline{v}} \curvearrowright \mathcal{O}_{\widetilde{k}\left(\dagger \mathcal{F}_{\underline{v}}\right)}^{\triangleright}\right)\left(\cong{ }^{\dagger} \mathcal{F}_{\underline{v}}\right) .
$$

Note: ${ }^{\exists}$ analogous construction for $\underline{w} \in \underline{\mathbb{V}}^{\text {arc }}$.

Write

$$
\widetilde{k}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right) \stackrel{\text { def }}{=} \dagger \overline{\mathcal{O}}_{\underline{v}}^{\times} \otimes \mathbb{Q}
$$

for this new field. Thus, we obtain

$$
\mathfrak{l o g}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right) \stackrel{\text { def }}{=}\left({ }^{\dagger} \Pi_{\underline{v}} \curvearrowright \mathcal{O}_{\widetilde{k}\left(\mathcal{F}_{\underline{v}}\right)}^{\triangleright}\right)\left(\cong{ }^{\dagger} \mathcal{F}_{\underline{v}}\right) .
$$

Note: ${ }^{\exists}$ analogous construction for $\underline{w} \in \underline{\mathbb{V}}^{\text {arc }}$.
\Longrightarrow a new \mathcal{F}-prime-strip $\mathfrak{l o g}\left({ }^{\dagger} \mathfrak{F}\right) \stackrel{\text { def }}{=}\left\{\mathfrak{l o g}\left({ }^{\dagger} \mathcal{F}_{\underline{w}}\right)\right\}_{\underline{w} \in \underline{\mathbb{V}}}$

Write

$$
\widetilde{k}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right) \stackrel{\text { def }}{=} \dagger \overline{\mathcal{O}}_{\underline{v}}^{\times} \otimes \mathbb{Q}
$$

for this new field. Thus, we obtain

$$
\mathfrak{l o g}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right) \stackrel{\text { def }}{=}\left({ }^{\dagger} \Pi_{\underline{v}} \curvearrowright \mathcal{O}_{\widetilde{k}\left(\mathcal{F}_{\underline{v}}\right)}^{\triangleright}\right)\left(\cong{ }^{\dagger} \mathcal{F}_{\underline{v}}\right) .
$$

Note: ${ }^{\exists}$ analogous construction for $\underline{w} \in \underline{\mathbb{V}}^{\text {arc }}$.
\Longrightarrow a new \mathcal{F}-prime-strip $\mathfrak{l o g}\left({ }^{\dagger} \mathfrak{F}\right) \stackrel{\text { def }}{=}\left\{\mathfrak{l o g}\left({ }^{\dagger} \mathcal{F}_{\underline{w}}\right)\right\}_{\underline{w} \in \underline{\mathbb{V}}}$
Observe: The underlying \mathcal{D}-prime-strip of $\mathfrak{l o g}\left({ }^{\dagger} \mathfrak{F}\right)$ coincides with the underlying \mathcal{D}-prime-strip of ${ }^{\dagger} \mathfrak{F}$.

Write

$$
\widetilde{k}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right) \stackrel{\text { def }}{=} \dagger \overline{\mathcal{O}}_{\underline{v}}^{\times} \otimes \mathbb{Q}
$$

for this new field. Thus, we obtain

$$
\mathfrak{l o g}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right) \stackrel{\text { def }}{=}\left({ }^{\dagger} \Pi_{\underline{v}} \curvearrowright \mathcal{O}_{\widetilde{k}\left(\mathcal{F}_{\underline{v}}\right)}^{\triangleright}\right)\left(\cong{ }^{\dagger} \mathcal{F}_{\underline{v}}\right) .
$$

Note: ${ }^{\exists}$ analogous construction for $\underline{w} \in \underline{\mathbb{V}}^{\text {arc }}$.
\Longrightarrow a new \mathcal{F}-prime-strip $\mathfrak{l o g}\left({ }^{\dagger} \mathfrak{F}\right) \stackrel{\text { def }}{=}\left\{\mathfrak{l o g}\left({ }^{\dagger} \mathcal{F}_{\underline{w}}\right)\right\}_{\underline{w} \in \underline{\mathbb{V}}}$
Observe: The underlying \mathcal{D}-prime-strip of $\mathfrak{l o g}\left({ }^{\dagger} \mathfrak{F}\right)$ coincides with the underlying \mathcal{D}-prime-strip of ${ }^{\dagger} \mathfrak{F}$.
${ }^{\dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l} \mathrm{NF}},{ }^{\dagger} \boldsymbol{H} \mathcal{H} \mathcal{\Theta}^{ \pm \text {ell } \mathrm{NF}}: \Theta^{ \pm \text {ell }} \mathrm{NF}$-Hodge theaters
${ }^{\dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l} \mathrm{NF}},{ }^{\dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l} \mathrm{NF}}$: the underlying $\mathcal{D}-\Theta^{ \pm \text {ell }} \mathrm{NF}$ theaters
${ }^{\dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l} \mathrm{NF}},{ }^{\dagger}{ }^{\dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l} \mathrm{NF}}$: the underlying $\mathcal{D}-\Theta^{ \pm \text {ell }} \mathrm{NF}$ theaters Note: ${ }^{\forall}$ isom. $\Xi:^{\dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\sim}{ }^{\dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l} \mathrm{NF}}$ induces an isom. ${ }^{\dagger} \mathfrak{D}_{\square} \xrightarrow{\sim}{ }^{\dagger} \mathfrak{D}_{\square}(\square \in T \cup J \cup\{\succ\} \cup\{>\})$ of \mathcal{D}-prime-strips.
${ }^{\dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l} \mathrm{NF}},{ }^{\dagger}{ }^{\dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l} \mathrm{NF}}$: the underlying $\mathcal{D}-\Theta^{ \pm \text {ell }} \mathrm{NF}$ theaters Note: ${ }^{\forall}$ isom. $\Xi:{ }^{\dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\sim}{ }^{\dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l}} \mathrm{NF}$ induces an isom. ${ }^{\dagger} \mathfrak{D}_{\square} \xrightarrow{\sim}{ }^{\dagger} \mathfrak{D}_{\square}(\square \in T \cup J \cup\{\succ\} \cup\{>\})$ of \mathcal{D}-prime-strips.
$\Longrightarrow{ }^{\exists!}$ isom. $\quad \log \left({ }^{\dagger} \mathfrak{F} \square\right) \xrightarrow{\sim}{ }^{\dagger} \mathfrak{F} \square$ of \mathcal{F}-prime-strips (cf. Observe).
${ }^{\dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l} \mathrm{NF}},{ }^{\dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l} \mathrm{NF}}$: the underlying $\mathcal{D}-\Theta^{ \pm \text {ell }} \mathrm{NF}$ theaters Note: ${ }^{\forall}$ isom. $\Xi:{ }^{\dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\sim}{ }^{\dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l}} \mathrm{NF}$ induces an isom. ${ }^{\dagger} \mathfrak{D}_{\square} \xrightarrow{\sim}{ }^{\dagger} \mathfrak{D}_{\square}(\square \in T \cup J \cup\{\succ\} \cup\{>\})$ of \mathcal{D}-prime-strips.
$\Longrightarrow{ }^{\exists!}$ isom. $\quad \log \left({ }^{\dagger} \mathfrak{F} \square\right) \xrightarrow{\sim}{ }^{\dagger} \mathfrak{F} \square$ of \mathcal{F}-prime-strips (cf. Observe).
We shall write

$$
{ }^{\dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\text { log }}{ }^{\dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF}
$$

and refer to as the (full) log-link the collection

$$
\left\{\mathfrak{l o g}\left({ }^{\dagger} \mathfrak{F}_{\square}\right) \underset{\Xi}{\underset{\rightrightarrows}{\rightrightarrows}}{ }^{\dagger} \mathfrak{F}_{\square}\right\}_{\square \in T \cup J \cup\{\succ\} \cup\{>\}, \Xi}
$$

— where we consider all isoms $\Xi:{ }^{\dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l} \mathrm{NF}} \xrightarrow{\sim}{ }^{\dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l}} \mathrm{NF}$.

Log-shells

We shall refer to

$$
\mathcal{I}_{\dagger \mathcal{F}_{\underline{v}}} \stackrel{\text { def }}{=} \frac{1}{2 p} \cdot \operatorname{Im}\left(\left(^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times}\right)^{\dagger} \Pi_{\underline{v}} \hookrightarrow{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times} \rightarrow \widetilde{k}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right)\right) \subseteq \widetilde{k}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right)^{\dagger} \Pi_{\underline{v}}
$$

as the Frobenius-like holomorphic log-shell.

Log-shells

We shall refer to

$$
\mathcal{I}_{\dagger \mathcal{F}_{\underline{v}}} \stackrel{\text { def }}{=} \frac{1}{2 p} \cdot \operatorname{Im}\left(\left(^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times}\right)^{\dagger} \Pi_{\underline{v}} \hookrightarrow{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times} \rightarrow \widetilde{k}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right)\right) \subseteq \widetilde{k}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right)^{\dagger} \Pi_{\underline{v}}
$$

as the Frobenius-like holomorphic log-shell.
Note: ${ }^{\exists}$ analog. construction for $\underline{w} \in \underline{\mathbb{V}}^{\text {arc }}$.

Log-shells

We shall refer to

$$
\mathcal{I}_{\dagger \mathcal{F}_{\underline{v}}} \stackrel{\text { def }}{=} \frac{1}{2 p} \cdot \operatorname{Im}\left(\left(^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times}\right)^{\dagger} \Pi_{\underline{v}} \hookrightarrow{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times} \rightarrow \widetilde{k}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right)\right) \subseteq \widetilde{k}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right)^{\dagger} \Pi_{\underline{v}}
$$

as the Frobenius-like holomorphic log-shell.
Note: ${ }^{\exists}$ analog. construction for $\underline{w} \in \underline{\mathbb{V}}^{\text {arc }} . \Longrightarrow \mathcal{I}_{\mathfrak{F}} \stackrel{\text { def }}{=}\left\{\mathcal{I}_{\mathcal{F}_{\mathcal{F}_{\underline{w}}}}\right\}_{\underline{w} \in \mathbb{V}}$

Log-shells

We shall refer to

$$
\mathcal{I}_{\dagger \mathcal{F}_{\underline{v}}} \stackrel{\text { def }}{=} \frac{1}{2 p} \cdot \operatorname{Im}\left(\left(^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times}\right)^{\dagger} \Pi_{\underline{v}} \hookrightarrow{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times} \rightarrow \widetilde{k}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right)\right) \subseteq \widetilde{k}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right)^{\dagger} \Pi_{\underline{v}}
$$

as the Frobenius-like holomorphic log-shell.
Note: ${ }^{\exists}$ analog. construction for $\underline{w} \in \underline{\mathbb{V}}^{\text {arc }} . \Longrightarrow \mathcal{I}_{\mathfrak{F}} \stackrel{\text { def }}{=}\left\{\mathcal{I}_{\mathcal{F}_{\underline{w}}}\right\}_{\underline{w} \in \underline{\mathbb{V}}}$
${ }^{\dagger} \mathfrak{D}=\left\{^{\dagger} \mathcal{D}_{\underline{w}}\right\}_{\underline{w} \in \underline{\mathbb{V}}}:$ a \mathcal{D}-prime-strip (In particular, ${ }^{\dagger} \mathcal{D}_{\underline{v}} \approx{ }^{\dagger} \Pi_{\underline{v}}$.)

Log-shells

We shall refer to

$$
\mathcal{I}_{\dagger \mathcal{F}_{\underline{v}}} \stackrel{\text { def }}{=} \frac{1}{2 p} \cdot \operatorname{Im}\left(\left(^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times}\right)^{\dagger} \Pi_{\underline{v}} \hookrightarrow{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times} \rightarrow \widetilde{k}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right)\right) \subseteq \widetilde{k}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right)^{\dagger} \Pi_{\underline{v}}
$$

as the Frobenius-like holomorphic log-shell.
Note: ${ }^{\exists}$ analog. construction for $\underline{w} \in \underline{\mathbb{V}}^{\text {arc }} . \Longrightarrow \mathcal{I}_{\mathfrak{F}} \stackrel{\text { def }}{=}\left\{\mathcal{I}_{\mathcal{F}_{\underline{w}}}\right\}_{\underline{w} \in \underline{\mathbb{V}}}$
${ }^{\dagger} \mathfrak{D}=\left\{{ }^{\dagger} \mathcal{D}_{\underline{w}}\right\}_{\underline{w} \in \underline{\mathbb{V}}}$: a \mathcal{D}-prime-strip (In particular, ${ }^{\dagger} \mathcal{D}_{\underline{v}} \approx{ }^{\dagger} \Pi_{\underline{v}}$.)
\Longrightarrow We can construct an \mathcal{F}-prime-strip $\mathfrak{F}\left({ }^{\dagger} \mathfrak{D}\right)$.

Log-shells

We shall refer to

$$
\left.\mathcal{I}_{\dagger \mathcal{F}_{\underline{v}}} \stackrel{\text { def }}{=} \frac{1}{2 p} \cdot \operatorname{Im}\left(\left(^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times}\right)^{\dagger} \Pi_{\underline{v}} \hookrightarrow{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times} \rightarrow \widetilde{k}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}\right)\right) \subseteq \widetilde{k}^{\dagger} \mathcal{F}_{\underline{v}}\right)^{\dagger} \Pi_{\underline{v}}
$$

as the Frobenius-like holomorphic log-shell.
Note: ${ }^{\exists}$ analog. construction for $\underline{w} \in \underline{\mathbb{V}}^{\text {arc }} . \Longrightarrow \mathcal{I}_{\mathfrak{F}} \xlongequal{\text { def }}\left\{\mathcal{I}_{\mathcal{F}_{\mathcal{F}_{\underline{w}}}}\right\}_{\underline{w} \in \underline{\mathbb{V}}}$
${ }^{\dagger} \mathfrak{D}=\left\{^{\dagger} \mathcal{D}_{\underline{w}}\right\}_{\underline{w} \in \underline{\mathbb{V}}}$: a \mathcal{D}-prime-strip (In particular, ${ }^{\dagger} \mathcal{D}_{\underline{v}} \approx{ }^{\dagger} \Pi_{\underline{v}}$.)
\Longrightarrow We can construct an \mathcal{F}-prime-strip $\mathfrak{F}\left({ }^{\dagger} \mathfrak{D}\right)$.
Thus, we can define the collection

$$
\mathcal{I}_{\dagger \mathfrak{D}} \stackrel{\text { def }}{=} \mathcal{I}_{\mathfrak{F}(\dagger \mathfrak{D})}
$$

of the étale-like holomorphic log-shells.

$$
\begin{array}{r}
\dagger \mathfrak{F}^{\vdash \times \boldsymbol{\mu}}=\left\{\left\{_{\underline{w}}^{\dagger} \mathcal{F}_{\underline{w}}^{\vdash \times \boldsymbol{\mu}}\right\}_{\underline{w} \in \underline{\mathbb{V}}} \text { : an } \mathcal{F}^{\vdash \times \boldsymbol{\mu}_{-} \text {prime strip. In particular, }}\right. \\
{ }^{\dagger} \mathcal{F}_{\underline{v}}^{\vdash \times \boldsymbol{\mu}} \approx\left({ }^{\dagger} G_{\underline{v}} \curvearrowright{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times \mu},\left\{\mathcal{I}_{H}^{\kappa}\right\}_{H \subseteq G_{\underline{v}}}\right)
\end{array}
$$

— where $\left\{\mathcal{I}_{H}^{\kappa}\right\}_{H \subseteq}{ }^{\dagger} G_{\underline{v}} \cong\left\{\operatorname{Im}\left(\left(\mathcal{O} \overline{\bar{F}}_{\underline{v}}\right)^{H} \rightarrow \mathcal{O}_{\bar{F}_{\underline{v}}}^{\times \mu}\right)\right\}_{H \subseteq G_{\underline{v}} \text { :open }}$.
${ }^{\dagger} \mathfrak{F}^{\vdash \times \mu}=\left\{\left\{_{\underline{w}}^{\dagger} \mathcal{F}_{\underline{\prime} \times \mu}\right\}_{\underline{w} \in \underline{\mathbb{V}}}\right.$: an $\mathcal{F}^{\vdash \times \mu_{\text {-prime }}}$ strip. In particular,

$$
{ }^{\dagger} \mathcal{F}_{\underline{v}}^{+\times \mu} \approx\left({ }^{\dagger} G_{\underline{v}} \curvearrowright{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times \mu},\left\{\mathcal{I}_{H}^{\kappa}\right\}_{H \subseteq G_{\underline{v}}}\right)
$$

— where $\left\{\mathcal{I}_{H}^{\kappa}\right\}_{H \subseteq}{ }^{\dagger} G_{\underline{v}} \cong\left\{\operatorname{Im}\left(\left(\mathcal{O} \overline{\bar{F}}_{\underline{v}}\right)^{H} \rightarrow \mathcal{O}_{\bar{F}_{\underline{v}}}^{\times \mu}\right)\right\}_{H \subseteq G_{\underline{v}} \text { :open }}$.
Then since we can reconstruct " p " (from ${ }^{\dagger} \mathcal{F}_{\underline{v}}^{\vdash-} \times \mu$), and, moreover,

$$
\widetilde{k}_{+}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}^{+\times \boldsymbol{\mu}}\right) \stackrel{\text { def }}{=} \dagger \overline{\mathcal{O}}_{\underline{v}}^{\times \mu} \otimes \mathbb{Q} \xrightarrow{\sim}{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times} \otimes \mathbb{Q},
$$

we can define Frobenius-like mono-analytic log-shell

$$
\mathcal{I}_{\dagger \mathcal{F}_{\underline{v}}^{\vdash} \times \boldsymbol{\mu}} \subseteq \widetilde{k}_{+}\left(\mathcal{F}_{\underline{v}}^{\dagger} \times \boldsymbol{\mu}\right)
$$

${ }^{\dagger} \mathfrak{F}^{\vdash \times \boldsymbol{\mu}}=\left\{^{\dagger} \mathcal{F}_{\underline{w}}^{\vdash \times \boldsymbol{\mu}}\right\}_{\underline{w} \in \underline{\mathbb{V}}}$: an $\mathcal{F}^{\vdash \times \mu_{-p r i m e}}$ strip. In particular,

$$
{ }^{\dagger} \mathcal{F}_{\underline{v}}^{+} \times \boldsymbol{\mu} \approx\left({ }^{\dagger} G_{\underline{v}} \curvearrowright{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times \mu},\left\{\mathcal{I}_{H}^{\kappa}\right\}_{H \subseteq}{ }_{H \subseteq G_{\underline{v}}}\right)
$$

— where $\left\{\mathcal{I}_{H}^{\kappa}\right\}_{H \subseteq}{ }^{\dagger} G_{\underline{v}} \cong\left\{\operatorname{Im}\left(\left(\mathcal{O}_{\bar{F}_{\underline{v}}}\right)^{H} \rightarrow \mathcal{O}_{\bar{F}_{\underline{v}}}^{\times \mu}\right)\right\}_{H \subseteq G_{\underline{v}}: \text { open }}$.
Then since we can reconstruct " p " (from ${ }^{\dagger} \mathcal{F}_{\underline{v}}^{\vdash} \times \mu$), and, moreover,

$$
\widetilde{k}_{+}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}^{+\times \boldsymbol{\mu}}\right) \stackrel{\text { def }}{=}{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times \mu} \otimes \mathbb{Q} \xrightarrow{\sim}{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times} \otimes \mathbb{Q},
$$

we can define Frobenius-like mono-analytic log-shell

$$
\mathcal{I}_{\dagger \mathcal{F}_{\underline{v}}^{\vdash} \times \boldsymbol{\mu}} \subseteq \widetilde{k}_{+}\left(\mathcal{F}_{\underline{v}}^{\dagger \times \boldsymbol{\mu}}\right)
$$

Note: ${ }^{\exists}$ analog. const. for $\underline{w} \in \underline{\mathbb{V}}^{\text {arc }}$.
${ }^{\dagger} \mathfrak{F}^{\vdash \times \boldsymbol{\mu}}=\left\{^{\dagger} \mathcal{F}_{\underline{w}}^{\vdash \times \boldsymbol{\mu}}\right\}_{\underline{w} \in \underline{\mathbb{V}}}$: an $\mathcal{F}^{\vdash \times \mu_{-p r i m e}}$ strip. In particular,

$$
{ }^{\dagger} \mathcal{F}_{\underline{v}}^{+} \times \boldsymbol{\mu} \approx\left({ }^{\dagger} G_{\underline{v}} \curvearrowright{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times \mu},\left\{\mathcal{I}_{H}^{\kappa}\right\}_{H \subseteq}{ }_{H \subseteq G_{\underline{v}}}\right)
$$

— where $\left\{\mathcal{I}_{H}^{\kappa}\right\}_{H \subseteq}{ }^{\dagger} G_{\underline{v}} \cong\left\{\operatorname{Im}\left(\left(\mathcal{O} \overline{\bar{F}}_{\underline{v}}\right)^{H} \rightarrow \mathcal{O}_{\bar{F}_{\underline{v}}}^{\times \mu}\right)\right\}_{H \subseteq G_{\underline{v}} \text { :open }}$.
Then since we can reconstruct " p " (from ${ }^{\dagger} \mathcal{F}_{\underline{v}}^{\vdash} \times \mu$), and, moreover,

$$
\widetilde{k}_{+}\left({ }^{\dagger} \mathcal{F}_{\underline{v}}^{+\times \boldsymbol{\mu}}\right) \stackrel{\text { def }}{=}{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times \mu} \otimes \mathbb{Q} \xrightarrow{\sim}{ }^{\dagger} \overline{\mathcal{O}}_{\underline{v}}^{\times} \otimes \mathbb{Q},
$$

we can define Frobenius-like mono-analytic log-shell

$$
\mathcal{I}_{\dagger \mathcal{F}_{\underline{v}}^{\vdash} \times \boldsymbol{\mu}} \subseteq \widetilde{k}_{+}\left(\mathcal{F}_{\underline{v}}^{\dagger} \times \boldsymbol{\mu}\right)
$$

$$
{ }^{\dagger} \mathfrak{D}^{\vdash}=\left\{^{\dagger} \mathcal{D}_{\underline{w}}^{\vdash}\right\}_{\underline{w} \in \underline{\mathbb{V}}:}: \text { a } \mathcal{D}^{\vdash} \text {-prime-strip } \quad \text { (In particular, }{ }^{\dagger} \mathcal{D}_{\underline{v}}^{\vdash} \approx{ }^{\dagger} G_{\underline{v}} \text {.) }
$$

${ }^{\dagger} \mathfrak{D}^{\vdash}=\left\{^{\dagger} \mathcal{D}_{\underline{w}}^{\vdash}\right\}_{\underline{w} \in \underline{\mathbb{V}}}$: a \mathcal{D}^{\vdash}-prime-strip (In particular, ${ }^{\dagger} \mathcal{D}_{\underline{v}}^{\vdash} \approx{ }^{\dagger} G_{\underline{v}}$.) \Longrightarrow We can construct an $\mathcal{F}^{\vdash \times \mu}$-prime-strip $\mathfrak{F}^{\vdash \times \mu}\left({ }^{\dagger} \mathfrak{D}^{\vdash}\right)$.

Thus, we can define the collection

$$
\mathcal{I}_{\dagger \mathfrak{D}^{\vdash}} \stackrel{\text { def }}{=} \mathcal{I}_{\mathfrak{F}^{\vdash \times \mu\left(\dagger \mathfrak{D}^{\vdash}\right)}}
$$

of the étale-like mono-analytic log-shells.
${ }^{\dagger} \mathfrak{D}^{\vdash}=\left\{^{\dagger} \mathcal{D}_{\underline{w}}^{\vdash}\right\}_{\underline{w} \in \underline{\mathbb{V}}}$: a \mathcal{D}^{\vdash}-prime-strip (In particular, ${ }^{\dagger} \mathcal{D}_{\underline{v}}^{\vdash} \approx{ }^{\dagger} G_{\underline{v}}$.)
\Longrightarrow We can construct an $\mathcal{F}^{\vdash \times \mu}$-prime-strip $\mathfrak{F}^{\vdash \times \mu}\left({ }^{\dagger} \mathfrak{D}^{\vdash}\right)$.
Thus, we can define the collection

$$
\mathcal{I}_{\dagger \mathfrak{D}^{\vdash}} \stackrel{\text { def }}{=} \mathcal{I}_{\mathfrak{F}^{\vdash \times \mu\left(\dagger \mathfrak{D}^{\vdash}\right)}}
$$

of the étale-like mono-analytic log-shells.

${ }^{\dagger} \mathfrak{D}^{\vdash}=\left\{^{\dagger} \mathcal{D}_{\underline{w}}^{\vdash}\right\}_{\underline{w} \in \underline{\mathbb{V}}}$: a \mathcal{D}^{\vdash}-prime-strip (In particular, ${ }^{\dagger} \mathcal{D}_{\underline{v}}^{\vdash} \approx{ }^{\dagger} G_{\underline{v}}$.)
\Longrightarrow We can construct an $\mathcal{F}^{\vdash \times \boldsymbol{\mu}}$-prime-strip $\mathfrak{F}^{\vdash \times \boldsymbol{\mu}}\left({ }^{\dagger} \mathfrak{D}^{\vdash}\right)$.
Thus, we can define the collection

$$
\mathcal{I}_{\dagger \mathfrak{D}^{\vdash}} \stackrel{\text { def }}{=} \mathcal{I}_{\left.\mathfrak{F}^{\vdash \times \mu(\dagger} \mathfrak{D}^{\vdash}\right)}
$$

of the étale-like mono-analytic log-shells.

- where $(\operatorname{Ind} 2)_{\underline{v}}=\operatorname{Ism}_{\underline{v}}\left(=\operatorname{Aut}_{G_{\underline{v}}}^{\times \boldsymbol{\mu}-\operatorname{Kum}}\left(\mathcal{O}_{\overline{F_{\underline{v}}}}^{\times \boldsymbol{\mu}}\right)\right)$.

Let $\mathcal{I} \in\left\{\mathcal{I}_{\dagger \mathcal{F}_{\underline{v}}}, \mathcal{I}_{\mathcal{D}_{\underline{v}}}\right\}$. Then, using the field str. on $\mathcal{I} \otimes \mathbb{Q}\left(\cong K_{\underline{v}}\right)$, for any cpt op. $A \subseteq \mathcal{I} \otimes \mathbb{Q}$, we can define the volume $\mu_{\underline{v}}(A) \in \mathbb{R}_{>0}$ satisfying the following:

- $A \cap B=\emptyset \quad \Longrightarrow \quad \mu_{\underline{v}}(A \cup B)=\mu_{\underline{v}}(A)+\mu_{\underline{v}}(B)$.
- $x \in \mathcal{I} \otimes \mathbb{Q}\left(\cong K_{\underline{v}}\right) \quad \Longrightarrow \quad \mu_{\underline{v}}(x+A)=\mu_{\underline{v}}(A)$.
- $\mu_{\underline{v}}$ ("the ring of integers in $\mathcal{I} \otimes \mathbb{Q}$ ") $=1$.

Let $\mathcal{I} \in\left\{\mathcal{I}_{\dagger \mathcal{F}_{\underline{v}}}, \mathcal{I}_{\mathcal{D}_{\underline{v}}}\right\}$. Then, using the field str. on $\mathcal{I} \otimes \mathbb{Q}\left(\cong K_{\underline{v}}\right)$, for any cpt op. $A \subseteq \mathcal{I} \otimes \mathbb{Q}$, we can define the volume $\mu_{\underline{v}}(A) \in \mathbb{R}_{>0}$ satisfying the following:

- $A \cap B=\emptyset \quad \Longrightarrow \quad \mu_{\underline{v}}(A \cup B)=\mu_{\underline{v}}(A)+\mu_{\underline{v}}(B)$.
- $x \in \mathcal{I} \otimes \mathbb{Q}\left(\cong K_{\underline{v}}\right) \quad \Longrightarrow \quad \mu_{\underline{v}}(x+A)=\mu_{\underline{v}}(A)$.
- $\mu_{\underline{v}}$ ("the ring of integers in $\mathcal{I} \otimes \mathbb{Q}$ ") $=1$.

Write $\mu_{\underline{v}}^{\log }(A) \stackrel{\text { def }}{=} \log \left(\mu_{\underline{v}}(A)\right)$ for the log-volume of A.

Let $\mathcal{I} \in\left\{\mathcal{I}_{\dagger \mathcal{F}_{\underline{v}}}, \mathcal{I}_{\mathcal{D}_{\underline{v}}}\right\}$. Then, using the field str. on $\mathcal{I} \otimes \mathbb{Q}\left(\cong K_{\underline{v}}\right)$, for any cpt op. $A \subseteq \mathcal{I} \otimes \mathbb{Q}$, we can define the volume $\mu_{\underline{v}}(A) \in \mathbb{R}_{>0}$ satisfying the following:

- $A \cap B=\emptyset \quad \Longrightarrow \quad \mu_{\underline{v}}(A \cup B)=\mu_{\underline{v}}(A)+\mu_{\underline{v}}(B)$.
- $x \in \mathcal{I} \otimes \mathbb{Q}\left(\cong K_{\underline{v}}\right) \quad \Longrightarrow \quad \mu_{\underline{v}}(x+A)=\mu_{\underline{v}}(A)$.
- $\mu_{\underline{v}}$ ("the ring of integers in $\mathcal{I} \otimes \mathbb{Q}$ ") $=1$.

Write $\mu_{\underline{v}}^{\log }(A) \stackrel{\text { def }}{=} \log \left(\mu_{\underline{v}}(A)\right)$ for the log-volume of A.
Note: ${ }^{\exists}$ similar notion for $\underline{w} \in \underline{\mathbb{V}}^{\text {arc }}$.

Let $\mathcal{I} \in\left\{\mathcal{I}_{\dagger \mathcal{F}_{\underline{v}}}, \mathcal{I}_{\mathcal{D}_{\underline{v}}}\right\}$. Then, using the field str. on $\mathcal{I} \otimes \mathbb{Q}\left(\cong K_{\underline{v}}\right)$, for any cpt op. $A \subseteq \mathcal{I} \otimes \mathbb{Q}$, we can define the volume $\mu_{\underline{v}}(A) \in \mathbb{R}_{>0}$ satisfying the following:

- $A \cap B=\emptyset \quad \Longrightarrow \quad \mu_{\underline{v}}(A \cup B)=\mu_{\underline{v}}(A)+\mu_{\underline{v}}(B)$.
- $x \in \mathcal{I} \otimes \mathbb{Q}\left(\cong K_{\underline{v}}\right) \quad \Longrightarrow \quad \mu_{\underline{v}}(x+A)=\mu_{\underline{v}}(A)$.
- $\mu_{\underline{v}}$ ("the ring of integers in $\mathcal{I} \otimes \mathbb{Q}$ ") $=1$.

Write $\mu_{\underline{v}}^{\log }(A) \stackrel{\text { def }}{=} \log \left(\mu_{\underline{v}}(A)\right)$ for the log-volume of A.
Note: ${ }^{\exists}$ similar notion for $\underline{w} \in \underline{\mathbb{V}}^{\text {arc }}$.
By applying the theory of [AbsTopIII], we can also reconstruct $\mu_{\underline{w}}^{\log }$ on $\mathcal{I}_{\dagger \mathcal{F}_{\underline{w}}^{\vdash \times \mu}} \otimes \mathbb{Q}$ and $\mathcal{I}_{\dagger \mathcal{D}_{\underline{w}}^{+}} \otimes \mathbb{Q}$ (s.t. they are "compatible").

Processions

Note: The (re)const'n of labels $j \in \mathbb{F}_{l}^{*}=\mathbb{F}_{l}^{\times} /\{ \pm 1\}=\left\{1, \ldots, l^{*}\right\}$ dep. on " $\Pi_{\underline{v}}$ " which is not "shared" by an alien arith. hol str. So

Processions

Note: The (re)const'n of labels $j \in \mathbb{F}_{l}^{*}=\mathbb{F}_{l}^{\times} /\{ \pm 1\}=\left\{1, \ldots, l^{*}\right\}$ dep. on " $\Pi_{\underline{v}}$ " which is not "shared" by an alien arith. hol str. So

$$
1,2, \ldots, l^{*} \xrightarrow{\Theta-\text { link }} ?, ?, \ldots, ?
$$

Processions

Note: The (re)const'n of labels $j \in \mathbb{F}_{l}^{*}=\mathbb{F}_{l}^{\times} /\{ \pm 1\}=\left\{1, \ldots, l^{*}\right\}$ dep. on " $\Pi_{\underline{v}}$ " which is not "shared" by an alien arith. hol str. So

$$
1,2, \ldots, l^{*} \xrightarrow{\Theta \text {-link }} ?, ?, \ldots, ?
$$

\Longrightarrow We consider a procession, i.e., the diag. of inclusions of fin. sets

$$
\mathbb{S}_{1}^{ \pm} \hookrightarrow \mathbb{S}_{2}^{ \pm} \hookrightarrow \cdots \hookrightarrow \mathbb{S}_{j+1}^{ \pm} \hookrightarrow \cdots \hookrightarrow \mathbb{S}_{l^{ \pm}}^{ \pm}
$$

— where we write $\mathbb{S}_{j+1}^{ \pm}=\{0,1, \ldots, j\}, l^{ \pm} \stackrel{\text { def }}{=} l^{*}+1$, and we think of each of these sets as being subj. to arbitrary permutation automs.

Processions

Note: The (re)const'n of labels $j \in \mathbb{F}_{l}^{*}=\mathbb{F}_{l}^{\times} /\{ \pm 1\}=\left\{1, \ldots, l^{*}\right\}$ dep. on " $\Pi_{\underline{v}}$ " which is not "shared" by an alien arith. hol str. So

$$
1,2, \ldots, l^{*} \xrightarrow{\Theta \text {-link }} ?, ?, \ldots, ?
$$

\Longrightarrow We consider a procession, i.e., the diag. of inclusions of fin. sets

$$
\mathbb{S}_{1}^{ \pm} \hookrightarrow \mathbb{S}_{2}^{ \pm} \hookrightarrow \cdots \hookrightarrow \mathbb{S}_{j+1}^{ \pm} \hookrightarrow \cdots \hookrightarrow \mathbb{S}_{l^{ \pm}}^{ \pm}
$$

— where we write $\mathbb{S}_{j+1}^{ \pm}=\{0,1, \ldots, j\}, l^{ \pm} \stackrel{\text { def }}{=} l^{*}+1$, and we think of each of these sets as being subj. to arbitrary permutation automs.
\Longrightarrow If one allows $j=0, \ldots, l^{*}$ to vary, then this trick reduces the resulting label indet. from a total of possibilities $\left(l^{ \pm}\right)^{l^{ \pm}}$to $l^{ \pm}$!

Local tensor packets

$\left\{^{\dagger} \widetilde{F}_{|t|}\right\}_{|t| \in|T|}$: a "capsule" of \mathcal{F}-prime-strips

Local tensor packets

$\left\{^{\dagger} \widetilde{F}_{|t|}\right\}_{|t| \in|T|}$: a "capsule" of \mathcal{F}-prime-strips

$$
\Longrightarrow\left(\left\{^{\dagger} \mathfrak{F}_{|t|}\right\}_{|t| \in \mathbb{S}_{1}^{ \pm}} \hookrightarrow \cdots \hookrightarrow\left\{^{\dagger} \widetilde{F}_{|t|}\right\}_{|t| \in \mathbb{S}_{j}^{ \pm}} \hookrightarrow \cdots \hookrightarrow\left\{^{\dagger} \widetilde{F}_{|t|}\right\}_{|t| \in \mathbb{S}_{l \pm}^{ \pm}}\right)
$$

Let us define the local holomorphic tensor packets as follows:

Local tensor packets

$\left\{{ }^{\dagger} \mathfrak{F}_{|t|}\right\}_{|t| \in|T|}$: a "capsule" of \mathcal{F}-prime-strips

$$
\Longrightarrow\left(\left\{^{\dagger} \mathfrak{F}_{|t|}\right\}_{|t| \in \mathbb{S}_{1}^{ \pm}} \hookrightarrow \cdots \hookrightarrow\left\{^{\dagger} \widetilde{F}_{|t|}\right\}_{|t| \in \mathbb{S}_{j}^{ \pm}} \hookrightarrow \cdots \hookrightarrow\left\{^{\dagger} \widetilde{\mathcal{F}}_{|t|}\right\}_{|t| \in \mathbb{S}_{t \pm}^{ \pm}}\right)
$$

Let us define the local holomorphic tensor packets as follows:
For $|t| \in|T|, \underline{v} \mid v_{\mathbb{Q}} \in \mathbb{V}(\mathbb{Q}), \quad 1 \leq j \leq l^{ \pm} \stackrel{\text { def }}{=} l^{*}+1$,

$$
\begin{gathered}
\left.\widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathbb{Q}}}\right) \stackrel{\text { def }}{=} \prod_{\underline{\mathbb{V}} \ni \underline{w} \mid v_{\mathbb{Q}}} \widetilde{k}^{\dagger} \mathcal{F}_{|t|, \underline{,}}\right) ; \\
\widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}\right) \stackrel{\text { def }}{=} \bigotimes_{|t| \in \mathbb{S}_{j}^{ \pm}} \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathbb{Q}}}\right) ; \\
\widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}\right) \stackrel{\text { def }}{=} \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j-1}^{ \pm}, v_{\mathbb{Q}}}\right) \otimes \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|j-1|, \underline{v}}\right) \subseteq \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}\right) .
\end{gathered}
$$

By replacing " \widetilde{k} " by " \mathcal{I} ", we obtain the compact submodules

$$
\begin{aligned}
& \mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathrm{v}}}\right) \subseteq \tilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathrm{e}}}\right) ; \quad \mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathrm{S}_{\ddagger}^{\ddagger}, v_{\mathrm{e}}}\right) \subseteq \tilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathrm{S}_{\mathrm{s}}^{\ddagger}, v_{\mathrm{e}}}\right) ; \\
& \mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{\dagger}, \underline{v}}\right) \subseteq \tilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{\dagger}, v}\right) .
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathbb{Q}}}\right) \subseteq \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{Q}}\right) ; \quad \mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}\right) \subseteq \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}\right) ; \\
\mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{\underline{1}}}\right) \subseteq \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}\right) .
\end{gathered}
$$

By considering the \mathbb{Q}-spans of them, we obtain the \mathbb{Q}_{p}-vector spaces

$$
\begin{aligned}
\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathbb{Q}}}\right) \subseteq & \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathbb{Q}}}\right) ; \quad\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}\right) \subseteq \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}\right) ; \\
& \left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}\right) \subseteq \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}\right) .
\end{aligned}
$$

$$
\begin{gathered}
\mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathbb{Q}}}\right) \subseteq \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathbb{Q}}}\right) ; \quad \mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}\right) \subseteq \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}\right) \\
\mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{\underline{1}}}\right) \subseteq \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}\right)
\end{gathered}
$$

By considering the \mathbb{Q}-spans of them, we obtain the \mathbb{Q}_{p}-vector spaces

$$
\begin{aligned}
\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathbb{Q}}}\right) \subseteq & \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathbb{Q}}}\right) ; \quad\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}\right) \subseteq \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}\right) ; \\
& \left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}\right) \subseteq \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}\right) .
\end{aligned}
$$

Note: We can construct étale-like versions

$$
\begin{aligned}
\mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{D}_{|t|, v_{\mathbb{Q}}}\right) & \subseteq\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{D}_{|t|, v_{\mathbb{Q}}}\right) \subseteq \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{D}_{|t|, v_{\mathbb{Q}}}\right) \\
\mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}\right) & \subseteq\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}\right) \subseteq \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}\right) \\
\mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}\right) & \subseteq\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}\right) \subseteq \widetilde{k}^{\otimes}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}\right)
\end{aligned}
$$

$\left\{^{\dagger} \mathfrak{F}_{|t|}^{-\times \mu}\right\}_{|t| \in|T|}$: a "capsule" of $\mathcal{F}^{\vdash \times \mu_{\text {-prime-strips }}}$
$\Longrightarrow\left(\left\{^{\dagger} \mathfrak{F}_{|t|}^{\vdash-\mu}\right\}_{|t| \in \mathbb{S}_{1}^{ \pm}} \hookrightarrow \cdots \hookrightarrow\left\{\left\{^{\dagger} \mathfrak{F}_{|t|}^{\vdash-\mu}\right\}_{|t| \in \mathbb{S}_{j}^{ \pm}} \hookrightarrow \cdots \hookrightarrow\left\{\left\{^{\dagger} \mathfrak{F}_{|t|}^{\vdash \times \mu}\right\}_{|t| \in \mathbb{S}_{l \pm}^{ \pm}}\right)\right.\right.$
Let us define the local mono-analytic tensor packets as follows:
$\left\{^{\dagger}{ }^{\ddagger}-\times \mu\right\}_{|t|}^{-\times|T|} \mid$ a "capsule" of $\mathcal{F}^{\vdash \times \mu_{\text {-prime-strips }}}$
$\Longrightarrow\left(\left\{^{\dagger} \mathcal{F}_{|t|}^{\vdash \times \mu}\right\}_{|t| \in S_{1}^{ \pm}} \hookrightarrow \cdots \hookrightarrow\left\{^{\dagger} \mathfrak{F}_{|t|}^{\vdash \times \mu}\right\}_{|t| \in S_{j}^{ \pm}} \hookrightarrow \cdots \hookrightarrow\left\{^{\dagger} \tilde{F}_{|t|}^{\vdash \times \mu}\right\}_{|t| \in S_{1 \pm}^{ \pm}}\right)$
Let us define the local mono-analytic tensor packets as follows:
For $|t| \in|T|, \quad \underline{v} \mid v_{\mathbb{Q}} \in \mathbb{V}(\mathbb{Q}), \quad 1 \leq j \leq l^{ \pm}$,

$$
\begin{gathered}
\widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t| \mid, v_{\mathbb{Q}}}^{\vdash \times \boldsymbol{\mu}}\right) \stackrel{\text { def }}{=} \prod_{\underline{\mathbb{V}} \ni \underline{w} \mid v_{\mathbb{Q}}} \widetilde{k}_{+}\left({ }^{\dagger} \mathcal{F}_{|t|, \underline{w}}^{\vdash \times \boldsymbol{\mu}}\right) ; \\
\widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{\perp}, v_{\mathbb{Q}}}^{\vdash \times \boldsymbol{\mu}}\right) \stackrel{\text { def }}{=} \bigotimes_{|t| \in \mathbb{S}_{j}^{ \pm}} \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathbb{Q}}}^{\vdash \times \boldsymbol{\mu}}\right) ; \\
\widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}^{\vdash \times \boldsymbol{\mu}}\right) \stackrel{\text { def }}{=} \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j-1}^{+}, v_{\mathbb{Q}}}^{\vdash \times \boldsymbol{\mu}}\right) \otimes \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|j-1|, \underline{v}}^{\vdash \times \boldsymbol{\mu}}\right) \subseteq \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}^{\vdash \times \boldsymbol{\mu}}\right) .
\end{gathered}
$$

By replacing " \widetilde{k}_{+}" by " \mathcal{I} ", we obtain the compact submodules

$$
\begin{aligned}
& \mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{Q}}^{\vdash-\mu}\right) \subseteq \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathbb{Q}}}^{\vdash \times \mu}\right) ; \quad \mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{Q}}^{\vdash \times \mu}\right) \subseteq \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{Q}}^{\vdash \times \mu}\right) ; \\
& \mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{\prime}, \underline{v}}^{\vdash \times \mu}\right) \subseteq \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{\nu}}^{\vdash \times \mu}\right) .
\end{aligned}
$$

By considering the \mathbb{Q}-spans of them, we obtain the \mathbb{Q}_{p}-vector spaces

$$
\begin{aligned}
\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathbb{Q}}}^{\vdash \times \boldsymbol{\mu}}\right) \subseteq & \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathbb{Q}}}^{\vdash \times \boldsymbol{\mu}}\right) ; \quad\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}^{\vdash \times \boldsymbol{\mu}}\right) \subseteq \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}^{\vdash \times \boldsymbol{\mu}}\right) ; \\
& \left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}^{\vdash \times \boldsymbol{\mu}}\right) \subseteq \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{\mu}}^{\vdash \times \boldsymbol{\mu}}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathbb{Q}}}^{\vdash \times \boldsymbol{\mu}}\right) \subseteq & \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t| \mid, v_{\mathbb{Q}}}^{\vdash \times \boldsymbol{\mu}}\right) ; \quad \mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{\perp}, v_{\mathbb{Q}}}^{\vdash \times \boldsymbol{\mu}}\right) \subseteq \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}^{\vdash \times \boldsymbol{\mu}}\right) \\
& \mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{\mu}}^{\vdash \boldsymbol{\mu}}\right) \subseteq \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{\mu}}^{\vdash \times \boldsymbol{\mu}}\right) .
\end{aligned}
$$

By considering the \mathbb{Q}-spans of them, we obtain the \mathbb{Q}_{p}-vector spaces

$$
\begin{aligned}
\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathbb{Q}}}^{\vdash \times \mu}\right) \subseteq & \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{|t|, v_{\mathbb{Q}}}^{\vdash \times \mu}\right) ; \quad\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}^{\vdash \times \mu}\right) \subseteq \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}^{\vdash \times \mu}\right) \\
& \left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}^{\vdash \times \boldsymbol{\mu}}\right) \subseteq \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}^{\vdash \times \boldsymbol{\mu}}\right) .
\end{aligned}
$$

Note: We can construct étale-like versions

$$
\begin{aligned}
\mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{D}_{|t|, v_{\mathbb{Q}}}^{\vdash}\right) & \subseteq\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{D}_{|t|, v_{\mathbb{Q}}}^{\vdash}\right) \subseteq \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{D}_{|t|, v_{\mathbb{Q}}}^{\vdash}\right) \\
\mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}^{-}\right) & \subseteq\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}^{\vdash}\right) \subseteq \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}^{-}\right) ; \\
\mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}^{-}\right) & \subseteq\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}^{\vdash}\right) \subseteq \widetilde{k}_{+}^{\otimes}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j}^{ \pm}, v}^{\vdash}\right)
\end{aligned}
$$

Local logarithmic Gaussian procession monoids

We consider the infinite chain of log-links

$$
\ldots \xrightarrow{\text { log }}-{ }^{1 \dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\text { log }}-{ }^{-0 \dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\text { log }}{ }^{1 \dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\text { log }} \ldots
$$

which determines
$\cdots \xrightarrow{\sim}{ }^{-1 \dagger} \mathcal{H} \mathcal{T} \mathcal{D}^{\mathcal{D}-\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow[\rightarrow]{\sim}{ }^{-0 \dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\sim}{ }^{1 \dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow[\rightarrow]{\sim} \ldots$.

Let $\underline{v} \in \mathbb{\mathbb { V }}^{\text {bad }}, n \in \mathbb{Z}$.

Local logarithmic Gaussian procession monoids

We consider the infinite chain of log-links

$$
\ldots \xrightarrow{\text { log }}-{ }^{1} \dagger \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\text { log }}-0 \dagger \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\text { log }}{ }^{1 \dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\text { log }} \ldots
$$

which determines
$\cdots \xrightarrow{\sim}{ }^{-1 \dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\sim}{ }^{-0 \dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm \text {ell }} \mathrm{NF}} \xrightarrow{\sim}{ }^{1 \dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow[\rightarrow]{\sim} \cdots$.

Let $\underline{v} \in \underline{\mathbb{V}}^{\text {bad }}, n \in \mathbb{Z}$.
Recall: We have the Frobenius-like Gaussian monoids

$$
\Psi_{\mathcal{F}_{\mathrm{gau}}}\left({ }^{\dagger n} \underline{\underline{\mathcal{F}}}_{\underline{v}}\right) \subseteq \infty \Psi_{\mathcal{F}_{\mathrm{gau}}}\left({ }^{\dagger n} \underline{\underline{\mathcal{F}}}_{\underline{v}}\right) \subseteq \prod_{|t| \in T^{*}} \overline{\mathcal{O}}_{\underline{v}}^{\triangleright}\left({ }^{\dagger n} \underline{\underline{\mathcal{F}}}_{\underline{v}}\right)|t| .
$$

We shall write

$$
{ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}}, \underline{v}}, \quad{ }_{\infty}^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}}, \underline{v}}
$$

and refer to as the Frobenius-like local Logarithmic Gaussian Procession monoids the images of $\Psi_{\mathcal{F}_{\text {gau }}}\left({ }^{\dagger n} \underline{\underline{\mathcal{F}}}_{\underline{v}}\right), \quad \infty \Psi_{\mathcal{F}_{\text {gau }}}\left({ }^{\dagger n} \underline{\underline{\mathcal{F}}}_{\underline{v}}\right)$ via

We shall write

$$
{ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}}, \underline{v}}, \quad{ }_{\infty}^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}}
$$

and refer to as the Frobenius-like local Logarithmic Gaussian Procession monoids the images of $\Psi_{\mathcal{F}_{\text {gau }}}\left({ }^{\dagger n} \underline{\underline{\mathcal{F}}}_{\underline{v}}\right), \infty \Psi_{\mathcal{F}_{\text {gau }}}\left({ }^{\dagger n} \underline{\underline{\mathcal{F}}}_{\underline{v}}\right)$ via

$$
\prod_{|t| \in T^{*}} \overline{\mathcal{O}}_{\underline{v}}^{\triangleright}\left({ }^{\dagger n} \underline{\underline{\mathcal{F}}}_{\underline{v}}\right)_{|t|} \xrightarrow{\sim} \prod_{|t| \in T^{*}} \overline{\mathcal{O}}_{\underline{v}}^{\triangleright}\left({ }^{\dagger n} \mathcal{F}_{|t|, \underline{v}}\right)_{|t|} \stackrel{\sim}{\leftarrow} \prod_{|t| \in T^{*}} \mathcal{O}_{\widetilde{k}\left({ }^{\dagger n-1} \mathcal{F}_{|t|, \underline{v}}\right)}
$$

$$
\subseteq \prod_{|t| \in T^{*}} \widetilde{k}\left({ }^{\dagger n-1} \mathcal{F}_{|t|, \underline{v}}\right) \hookrightarrow \prod_{j \in J} \widetilde{k}^{\otimes}\left({ }^{\dagger n-1} \mathcal{F}_{\mathbb{S}_{j+1}^{ \pm}, \underline{v}}\right)
$$

— where " $\xrightarrow{\sim}$ " arises from the definition of Hodge theaters;
$" \stackrel{\sim}{\leftarrow}$ " arises from the log-link ${ }^{n-1 \dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\text { log }}{ }^{n \dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm \text {ell }} \mathrm{NF}}$.
$" \hookrightarrow$ " arises from $T^{*} \xrightarrow{\sim} J$ and " $(-) \mapsto 1 \otimes(-)$ ".

We shall write

$$
{ }^{\circ} \dagger \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF}
$$

for the $\mathcal{D}-\Theta^{ \pm e l l} \mathrm{NF}$ theater (det'd up to isom.) obtained by identifying the infinite chain of (full-poly) isomorphisms
$\cdots \xrightarrow{\sim}{ }^{-1 \dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\sim}{ }^{-0 \dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\sim}{ }^{1 \dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l} \mathrm{NF}} \xrightarrow{\sim} \cdots$.

We shall write

$$
{ }^{\circ} \dagger \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF}
$$

for the $\mathcal{D}-\Theta^{ \pm e l l} \mathrm{NF}$ theater (det'd up to isom.) obtained by identifying the infinite chain of (full-poly) isomorphisms
$\cdots \xrightarrow{\sim}{ }^{-1 \dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\sim}{ }^{-0 \dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\sim}{ }^{1 \dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l} \mathrm{NF}} \xrightarrow{\sim} \cdots$.

Then, by applying a similar const. to the étale-like Gaussian monoids

$$
\Psi_{\mathrm{gau}}\left({ }^{\dagger} \mathcal{D}_{\succ, \underline{v}}\right) \subseteq \Psi_{\mathrm{gau}}\left({ }^{\dagger} \mathcal{D}_{\succ, \underline{v}}\right) \subseteq \prod_{|t| \in T^{*}} \overline{\mathcal{O}}_{\underline{v}}^{\triangleright}\left({ }^{\dagger} \mathcal{D}_{\succ, \underline{v}}\right)_{|t|},
$$

We shall write

$$
{ }^{\circ} \dagger \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF}
$$

for the $\mathcal{D}-\Theta^{ \pm e l l} \mathrm{NF}$ theater (det'd up to isom.) obtained by identifying the infinite chain of (full-poly) isomorphisms
$\ldots \xrightarrow{\sim}{ }^{-1 \dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm \text {ell }} \mathrm{NF}} \xrightarrow{\sim}{ }^{-0 \dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm \text {ell }} \mathrm{NF}} \xrightarrow{\sim}{ }^{1 \dagger} \mathcal{H} \mathcal{T}^{\mathcal{D}-\Theta^{ \pm e l l} \mathrm{NF}} \xrightarrow{\sim} \cdots$.

Then, by applying a similar const. to the étale-like Gaussian monoids

$$
\Psi_{\text {gau }}\left({ }^{\dagger 0} \mathcal{D}_{\succ, \underline{v}}\right) \subseteq{ }_{\infty} \Psi_{\text {gau }}\left({ }^{\dagger} \mathcal{D}_{\succ, \underline{v}}\right) \subseteq \prod_{|t| \in T^{*}} \overline{\mathcal{O}}_{\underline{v}}^{\triangleright}\left({ }^{\dagger} \mathcal{D}_{\succ, \underline{v}}\right)_{|t|},
$$

we obtain étale-like local Logarithmic Gaussian Procession monoids

$$
{ }^{\dagger} \Psi_{\mathcal{D}_{\mathrm{LGP}}, \underline{v}}, \quad{ }_{\infty}^{\dagger o} \Psi_{\mathcal{D}_{\mathrm{LGP}}, \underline{v}} .
$$

$\mathfrak{l o g}$-Kummer correspondences (LGP monoids)

For each $n \in \mathbb{Z}$, we have the Kummer isomorphisms

$$
{ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}} \xrightarrow{\sim}{ }^{\dagger 0} \Psi_{\mathcal{D}_{\mathrm{LGP}, \underline{v}},}, \quad{ }_{\infty}^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}} \xrightarrow{\sim}{ }_{\infty}^{\dagger} \Psi_{\mathcal{D}_{\mathrm{LGP}}, \underline{v}} .
$$

$\mathfrak{l o g}$-Kummer correspondences (LGP monoids)

For each $n \in \mathbb{Z}$, we have the Kummer isomorphisms

$$
{ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}} \xrightarrow{\sim}{ }^{\dagger 0} \Psi_{\mathcal{D}_{\mathrm{LGP}}, \underline{v}}, \quad{ }_{\infty}^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}} \xrightarrow{\sim}{ }_{\infty}^{\dagger} \Psi_{\mathcal{D}_{\mathrm{LGP}}, \underline{v}} .
$$

${ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}}, \underline{v}}^{\times G} \subseteq{ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}}$: the Gal-inv. of the group of units $\left(\cong \mathcal{O}_{K_{\underline{v}}}^{\times}\right)$ ${ }^{\dagger n} \Psi^{\perp} \mathcal{\mathcal { F }}_{\mathrm{LGP}, \underline{v}} \subseteq{ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}}$: the "splitting monoid" gen. by $\boldsymbol{\mu}_{2 l}$ and $\xi^{\mathbb{N}}$

$\mathfrak{l o g}$-Kummer correspondences (LGP monoids)

For each $n \in \mathbb{Z}$, we have the Kummer isomorphisms

$$
{ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}} \xrightarrow{\sim}{ }^{\dagger 0} \Psi_{\mathcal{D}_{\mathrm{LGP}, \underline{v}},}, \quad{ }_{\infty}^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}} \xrightarrow{\sim}{ }_{\infty}^{\dagger} \Psi_{\mathcal{D}_{\mathrm{LGP},}, \underline{v}} .
$$

${ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}}^{\times G} \subseteq{ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}}$: the Gal-inv. of the group of units $\left(\cong \mathcal{O}_{K_{\underline{v}}}^{\times}\right)$
${ }^{\dagger n} \Psi_{\mathcal{F}_{\text {LGP }, \underline{v}}}^{\perp} \subseteq{ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}}$: the "splitting monoid" gen. by $\boldsymbol{\mu}_{2 l}$ and $\xi^{\mathbb{N}}$
Note: ${ }^{\dagger n} \Psi_{\mathcal{F}_{\text {LGP }, \underline{v}}}^{\times G}$ and ${ }^{\dagger n} \Psi_{\mathcal{F}_{\text {LGP }, \underline{v}}}^{\perp}$ act on the tensor packets

$$
\prod_{j \in J}\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger n-1} \mathcal{F}_{\mathbb{S}_{j+1}^{ \pm}, \underline{l}}\right) \xrightarrow{\sim} \prod_{j \in J}\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{D}_{\succ, \mathbb{S}_{j+1}^{ \pm}, \underline{\underline{v}}}\right) .
$$

$\mathfrak{l o g}$-Kummer correspondences (LGP monoids)

For each $n \in \mathbb{Z}$, we have the Kummer isomorphisms

$$
{ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}} \xrightarrow{\sim}{ }^{\dagger 0} \Psi_{\mathcal{D}_{\mathrm{LGP}}, \underline{v}}, \quad{ }_{\infty}^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}} \xrightarrow{\sim}{ }_{\infty}^{\dagger} \Psi_{\mathcal{D}_{\mathrm{LGP}}, \underline{v}} .
$$

${ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}}^{\times G} \subseteq{ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}}$: the Gal-inv. of the group of units $\left(\cong \mathcal{O}_{K_{\underline{v}}}^{\times}\right)$
${ }^{\dagger n} \Psi_{\mathcal{F}_{\text {LGP }, \underline{v}}}^{\perp} \subseteq{ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}}$: the "splitting monoid" gen. by $\boldsymbol{\mu}_{2 l}$ and $\xi^{\mathbb{N}}$
Note: ${ }^{\dagger n} \Psi_{\mathcal{F}_{\text {LGP }} \underline{v}}^{\times G}$ and ${ }^{\dagger n} \Psi_{\mathcal{F}_{\text {LGP }, \underline{v}}}^{\perp}$ act on the tensor packets

$$
\prod_{j \in J}\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger n-1} \mathcal{F}_{\mathbb{S}_{j+1}^{ \pm}, \underline{l}}\right) \xrightarrow{\sim} \prod_{j \in J}\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{D}_{\succ, \mathbb{S}_{j+1}^{ \pm}, \underline{\underline{1}}}\right) .
$$

We want to make these actions "invariant w.r.t. the action $+1 \curvearrowright \mathbb{Z}$ ".

Write $\left(\mathcal{I}^{\otimes}\right)_{J}^{\mathscr{Q}}(-) \stackrel{\text { def }}{=} \prod_{j \in J}\left(\mathcal{I}^{\otimes}\right)^{\mathscr{Q}}(-)$. Let $\square \in\{\times G, \perp\}$.

Write $\left(\mathcal{I}^{\otimes}\right)_{J}^{\mathbb{Q}}(-) \stackrel{\text { def }}{=} \prod_{j \in J}\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}(-)$. Let $\square \in\{\times G, \perp\}$.

$$
\begin{aligned}
& { }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{V}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Kum } \downarrow^{2} \text { Kum } \downarrow^{2} \quad \text { Kum } \downarrow_{2}
\end{aligned}
$$

Write $\left(\mathcal{I}^{\otimes}\right)_{J}^{\mathbb{Q}}(-) \stackrel{\text { def }}{=} \prod_{j \in J}\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}(-)$. Let $\square \in\{\times G, \perp\}$.

$$
\begin{aligned}
& { }^{\dagger n}{ }^{n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{V}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Kum } \downarrow_{2} \text { Kum } \downarrow_{2} \text { Kum } \downarrow_{2}
\end{aligned}
$$

In IUT, we consider the log-Kummer correspondence

$$
\left\{\operatorname{Kum} \circ \mathfrak{l o g}^{m}\left({ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}}, \underline{v}}^{\square}\right) \curvearrowright\left(\mathcal{I}^{\otimes}\right)_{J}^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{D}_{\succ, \mathbb{S}_{j+1}, \underline{v}}^{ \pm}\right)\right\}_{n \in \mathbb{Z}, m \in \mathbb{Z}_{\geq 0}}
$$

which is "invariant" w.r.t. the action $\mathbb{Z} \ni n \mapsto n+1 \in \mathbb{Z}$.

Note:

- Suppose that $\square=\perp$. Then the only portions of these actions that are possibly related to one another via these log-links are the indeterminacies w. r. t. multiplication by roots of unity in the domains of the log-links (cf. const. mult. rigidity).

Note:

- Suppose that $\square=\perp$. Then the only portions of these actions that are possibly related to one another via these log-links are the indeterminacies w. r. t. multiplication by roots of unity in the domains of the log-links (cf. const. mult. rigidity). \Longrightarrow Indeterminacies at n that correspond - via log to "addition by zero" at $n+1$

Note:

- Suppose that $\square=\perp$. Then the only portions of these actions that are possibly related to one another via these log-links are the indeterminacies w. r. t. multiplication by roots of unity in the domains of the log-links (cf. const. mult. rigidity). \Longrightarrow Indeterminacies at n that correspond - via log to "addition by zero" at $n+1 \Longrightarrow$ non-interference!

Note:

- Suppose that $\square=\perp$. Then the only portions of these actions that are possibly related to one another via these log-links are the indeterminacies w. r. t. multiplication by roots of unity in the domains of the log-links (cf. const. mult. rigidity).
\Longrightarrow Indeterminacies at n that correspond - via log to "addition by zero" at $n+1 \Longrightarrow$ non-interference!
- Suppose that $\square=\times G$. Then we only know

$$
\bigcup_{n \in \mathbb{Z},} \bigcup_{m \in \mathbb{Z} \geq 0} \operatorname{Kum} \circ \mathfrak{l o g}^{m}\left({ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}}, \underline{v}}^{\times G}\right) \subseteq\left(\mathcal{I}^{\otimes}\right)_{J}^{\mathbb{Q}}\left({ }^{\dagger 0} \mathcal{D}_{\succ, \mathbb{S}_{j+1}^{ \pm}, \underline{v}}\right)
$$

(cf. "upper semi-commutativity")

Note:

- Suppose that $\square=\perp$. Then the only portions of these actions that are possibly related to one another via these log-links are the indeterminacies w. r. t. multiplication by roots of unity in the domains of the log-links (cf. const. mult. rigidity). \Longrightarrow Indeterminacies at n that correspond - via log to "addition by zero" at $n+1 \Longrightarrow$ non-interference!
- Suppose that $\square=\times G$. Then we only know

$$
\begin{aligned}
& \quad \bigcup_{n \in \mathbb{Z}, m \in \mathbb{Z} \geq 0} \operatorname{Kum} \circ \mathfrak{l o g}^{m}\left({ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}}^{\times G}\right) \subseteq\left(\mathcal{I}^{\otimes}\right)_{J}^{\mathbb{Q}}\left({ }^{\dagger 0} \mathcal{D}_{\succ, \mathbb{S}_{j+1}, \underline{v}}\right) \\
& \text { (cf. "upper semi-commutativity") }
\end{aligned}
$$

Case of number fields

Note: By our assumption, $C=[X /\{ \pm 1\}]$ descends to the hyperbolic orbicurve $C_{F_{\mathrm{mod}}}$ over F_{mod}.
$\mathcal{D}^{\odot} \approx \pi_{1}^{\text {ét }}\left(\underline{C}_{K}\right), \mathcal{D}^{\circledast} \approx \pi_{1}^{\text {ét }}\left(C_{F_{\mathrm{mod}}}\right) \Longrightarrow \mathcal{D}^{\odot} \rightarrow \mathcal{D}^{\circledast}$
$S_{\mathrm{mod}} \stackrel{\text { def }}{=}\left[\operatorname{Spec}\left(\mathcal{O}_{K}\right) / \operatorname{Gal}\left(K / F_{\mathrm{mod}}\right)\right]$
$\mathcal{F}^{\odot}\left(\right.$ resp. $\left.\mathcal{F}^{\circledast}\right)$: the Frobenioid whose objects are pairs (X, \mathcal{L}) where X is a fét cov. of \underline{C}_{K} (resp. $C_{F_{\text {mod }}}$); \mathcal{L} is an arith. line bdl over $\operatorname{Nor}\left(X / S_{\text {mod }}\right)$
$\mathcal{F}_{\text {mod }}^{\circledast}:$ the Frobenioid whose objects are pairs $\left(S_{\text {mod }}, \mathcal{L}\right)$ \mathcal{L} is an arith. line bdl over $S_{\text {mod }}$

Theorem
${ }^{\exists}$ functorial algorithm

$$
{ }^{\dagger} \mathcal{D}^{\odot} \quad \longmapsto \quad F_{\bmod }\left({ }^{\dagger} \mathcal{D}^{\odot}\right)
$$

corresponding to the field F_{mod}. Moreover, ${ }^{\exists}$ functorial algorithm for constructing the Kummer isomorphism

$$
\left({ }^{\dagger} \mathcal{F}^{\ominus} \ldots{ }^{\dagger} \mathcal{F}^{\oplus}\right) \quad \longmapsto \quad F_{\bmod }\left({ }^{\dagger} F^{\oplus}\right)^{\times} \xrightarrow{\sim} F_{\bmod }\left({ }^{\dagger} \mathcal{D}^{\ominus}\right)^{\times} .
$$

Theorem
${ }^{\exists}$ functorial algorithm

$$
{ }^{\dagger} \mathcal{D}^{\odot} \quad \longmapsto \quad F_{\bmod }\left({ }^{\dagger} \mathcal{D}^{\odot}\right)
$$

corresponding to the field $F_{\text {mod }}$. Moreover, ${ }^{\exists}$ functorial algorithm for constructing the Kummer isomorphism

$$
\left({ }^{\dagger} \mathcal{F}^{\ominus} \ldots{ }^{\dagger} \mathcal{F}^{\oplus}\right) \quad \longmapsto \quad F_{\bmod }\left({ }^{\dagger} F^{\ominus}\right)^{\times} \xrightarrow{\sim} F_{\bmod }\left({ }^{\dagger} \mathcal{D}^{\ominus}\right)^{\times} .
$$

Idea:

- Evaluation of a " κ-coric function" at various pts $\rightsquigarrow F_{\bmod }^{\times}$
- Reconstruct the decom. gps $\subseteq \pi_{1}^{\text {ét }}\left(C_{F_{\mathrm{mod}}}\right)$ assoc. to various pts by applying the theory of Belyi cuspidalization
- An elementary equality $\mathbb{Q}_{>0} \cap \widehat{\mathbb{Z}}^{\times}=\{1\}$

Global tensor packets

Note: ${ }^{\dagger} F_{\mathrm{mod}} \stackrel{\text { def }}{=} F_{\text {mod }}\left({ }^{\dagger} \mathcal{F}^{\circledast}\right) \cup\{0\}$ admits a nat'l str. of field.

Global tensor packets

Note: ${ }^{\dagger} F_{\text {mod }} \stackrel{\text { def }}{=} F_{\text {mod }}\left({ }^{\dagger} \mathcal{F}^{\circledast}\right) \cup\{0\}$ admits a nat'l str. of field.
\Longrightarrow By applying \mathbb{F}_{l}^{*}-symmetry, for any $j, j^{\prime} \in J$,

$$
\left(\left({ }^{\dagger} F_{\mathrm{mod}}\right)_{j} \xrightarrow{\sim} F_{\mathrm{mod}}\left({ }^{\dagger} \mathcal{D}^{\ominus}\right)_{j}\right) \xrightarrow{\sim}\left(\left({ }^{\dagger} F_{\mathrm{mod}}\right)_{j^{\prime}} \xrightarrow{\sim} F_{\mathrm{mod}}\left({ }^{\dagger} \mathcal{D}^{\ominus}\right)_{j^{\prime}}\right)
$$

Global tensor packets

Note: ${ }^{\dagger} F_{\text {mod }} \stackrel{\text { def }}{=} F_{\text {mod }}\left({ }^{\dagger} \mathcal{F}^{\circledast}\right) \cup\{0\}$ admits a nat'l str. of field.
\Longrightarrow By applying \mathbb{F}_{l}^{*}-symmetry, for any $j, j^{\prime} \in J$,

$$
\left(\left({ }^{\dagger} F_{\mathrm{mod}}\right)_{j} \xrightarrow{\sim} F_{\mathrm{mod}}\left({ }^{\dagger} \mathcal{D}^{\odot}\right)_{j}\right) \xrightarrow{\sim}\left(\left({ }^{\dagger} F_{\mathrm{mod}}\right)_{j^{\prime}} \xrightarrow{\sim} F_{\mathrm{mod}}\left({ }^{\dagger} \mathcal{D}^{\odot}\right)_{j^{\prime}}\right)
$$

\Longrightarrow We can define the diagonal $\left({ }^{\dagger} F_{\mathrm{mod}}\right)_{\langle J\rangle} \subseteq \prod_{j \in J}\left({ }^{\dagger} F_{\mathrm{mod}}\right)_{j}$

Global tensor packets

Note: ${ }^{\dagger} F_{\text {mod }} \stackrel{\text { def }}{=} F_{\text {mod }}\left({ }^{\dagger} \mathcal{F}^{\circledast}\right) \cup\{0\}$ admits a nat'l str. of field.
\Longrightarrow By applying \mathbb{F}_{l}^{*}-symmetry, for any $j, j^{\prime} \in J$,

$$
\left(\left({ }^{\dagger} F_{\mathrm{mod}}\right)_{j} \xrightarrow{\sim} F_{\mathrm{mod}}\left({ }^{\dagger} \mathcal{D}^{\odot}\right)_{j}\right) \xrightarrow{\sim}\left(\left({ }^{\dagger} F_{\mathrm{mod}}\right)_{j^{\prime}} \xrightarrow{\sim} F_{\mathrm{mod}}\left({ }^{\dagger} \mathcal{D}^{\odot}\right)_{j^{\prime}}\right)
$$

\Longrightarrow We can define the diagonal $\left({ }^{\dagger} F_{\mathrm{mod}}\right){ }_{\langle J\rangle} \subseteq \prod_{j \in J}\left({ }^{\dagger} F_{\mathrm{mod}}\right)_{j}$
\Longrightarrow We obtain the global tensor packet

$$
\left({ }^{\dagger} F_{\mathrm{mod}}\right)_{\mathbb{S}_{j}^{ \pm}}^{\otimes} \stackrel{\text { def }}{=} \bigotimes_{|t| \in \mathbb{S}_{j}^{ \pm}}\left({ }^{\dagger} F_{\mathrm{mod}}\right)_{|t|}
$$

— where $\left.\left({ }^{\dagger} F_{\mathrm{mod}}\right)\right)_{|t|}=\left({ }^{\dagger} F_{\mathrm{mod}}\right)_{j}\left(\right.$ if $\left.|t| \in T^{*} \cong J\right) ;\left({ }^{\dagger} F_{\mathrm{mod}}\right)_{\langle J\rangle}($ if $|t|=0)$.

Two natural ways to approach the construction of $\mathcal{F}_{\text {mod }}^{\circledast}$

- $\mathcal{F}_{\mathrm{MOD}}^{\circledast}$ (rational function torsor version)

An object $\mathcal{T}=\left(T,\left\{t_{\underline{v}}\right\}_{\underline{v} \in \underline{\mathbb{V}}}\right)$ of $\mathcal{F}_{\mathrm{MOD}}^{\circledast}$ consists of a collection
(a) an $F_{\text {mod }}^{\times}$-torsor T;
(b) for each $\underline{v} \in \underline{\mathbb{V}}$, the trivialization $t_{\underline{v}}$ of the torsor " $T_{\underline{v}}$ " obt'd from T subj. to a certain condition ${ }^{" \exists} t \in T$ s.t. $t_{\underline{v}}$ coincides w / \ldots "

- $\mathcal{F}_{\mathfrak{m o d}}^{\circledast}$ (local fractional ideal version)

An object $\mathcal{J}=\left\{J_{\underline{v}}\right\}_{\underline{v} \in \underline{\mathbb{V}}}$ of $\mathcal{F}_{\mathfrak{m o d}}^{\circledast}$ consists of a collection of "fractional ideals" $J_{\underline{v}} \subseteq K_{\underline{v}}$ s.t. $J_{\underline{v}}=\mathcal{O}_{K_{\underline{v}}}$ for a.a. $\underline{v} \in \underline{\mathbb{V}}$

We have nat'l isoms of Frobenioids

$$
\mathcal{F}_{\mathfrak{m o d}}^{\circledast} \xrightarrow{\sim} \mathcal{F}_{\mathrm{mod}}^{\circledast} \xrightarrow{\sim} \mathcal{F}_{\mathrm{MOD}}^{\circledast} .
$$

Note:

We have nat'l isoms of Frobenioids

$$
\mathcal{F}_{\mathrm{mod}}^{\circledast} \xrightarrow{\sim} \mathcal{F}_{\mathrm{mod}}^{\circledast} \xrightarrow{\sim} \mathcal{F}_{\mathrm{MOD}}^{\circledast} .
$$

Note:

- The construction of $\mathcal{F}_{\mathrm{MOD}}^{\circledast}$ depends only on the multiplicative structure of $F_{\text {mod }}^{\times}$.

We have nat'l isoms of Frobenioids

$$
\mathcal{F}_{\mathrm{mod}}^{\circledast} \xrightarrow{\sim} \mathcal{F}_{\mathrm{mod}}^{\circledast} \xrightarrow{\sim} \mathcal{F}_{\mathrm{MOD}}^{\circledast} .
$$

Note:

- The construction of $\mathcal{F}_{\mathrm{MOD}}^{\circledast}$ depends only on the multiplicative structure of $F_{\text {mod }}^{\times}$.
\Longrightarrow "not interfere" in the log-Kummer corr. (cf. below)

We have nat'l isoms of Frobenioids

$$
\mathcal{F}_{\mathfrak{m o d}}^{\circledast} \xrightarrow{\sim} \mathcal{F}_{\mathrm{mod}}^{\circledast} \xrightarrow{\sim} \mathcal{F}_{\mathrm{MOD}}^{\circledast} .
$$

Note:

- The construction of $\mathcal{F}_{\mathrm{MOD}}^{\circledast}$ depends only on the multiplicative structure of $F_{\text {mod }}^{\times}$.
\Longrightarrow "not interfere" in the log-Kummer corr. (cf. below)
\Longrightarrow suited to the construction of the Θ-link

We have nat'l isoms of Frobenioids

$$
\mathcal{F}_{\mathfrak{m o d}}^{\circledast} \xrightarrow{\sim} \mathcal{F}_{\mathrm{mod}}^{\circledast} \xrightarrow{\sim} \mathcal{F}_{\mathrm{MOD}}^{\circledast} .
$$

Note:

- The construction of $\mathcal{F}_{\mathrm{MOD}}^{\circledast}$ depends only on the multiplicative structure of $F_{\text {mod }}^{\times}$.
\Longrightarrow "not interfere" in the log-Kummer corr. (cf. below)
\Longrightarrow suited to the construction of the Θ-link
- The construction of $\mathcal{F}_{\mathfrak{m o d}}^{\circledast}$ involves the module, i.e., the additive, structure of the localizations $K_{\underline{v}}$.

We have nat'l isoms of Frobenioids

$$
\mathcal{F}_{\mathfrak{m o d}}^{\circledast} \xrightarrow{\sim} \mathcal{F}_{\mathrm{mod}}^{\circledast} \xrightarrow{\sim} \mathcal{F}_{\mathrm{MOD}}^{\circledast} .
$$

Note:

- The construction of $\mathcal{F}_{\mathrm{MOD}}^{\circledast}$ depends only on the multiplicative structure of $F_{\text {mod }}^{\times}$.
\Longrightarrow "not interfere" in the log-Kummer corr. (cf. below)
\Longrightarrow suited to the construction of the Θ-link
- The construction of $\mathcal{F}_{\mathfrak{m o d}}^{\circledast}$ involves the module, i.e., the additive, structure of the localizations $K_{\underline{v}}$.
\Longrightarrow "interfere" in the log-Kummer corr. (cf. (Ind3))

We have nat'l isoms of Frobenioids

$$
\mathcal{F}_{\mathfrak{m o d}}^{\circledast} \xrightarrow{\sim} \mathcal{F}_{\mathrm{mod}}^{\circledast} \xrightarrow{\sim} \mathcal{F}_{\mathrm{MOD}}^{\circledast} .
$$

Note:

- The construction of $\mathcal{F}_{\mathrm{MOD}}^{\circledast}$ depends only on the multiplicative structure of $F_{\text {mod }}^{\times}$.
\Longrightarrow "not interfere" in the log-Kummer corr. (cf. below)
\Longrightarrow suited to the construction of the Θ-link
- The construction of $\mathcal{F}_{\mathfrak{m o d}}^{\circledast}$ involves the module, i.e., the additive, structure of the localizations $K_{\underline{v}}$.
\Longrightarrow "interfere" in the log-Kummer corr. (cf. (Ind3))
\Longrightarrow but, suited to the explicit comp. by means of log-volumes

$\mathfrak{l o g}$-Kummer correspondences (number fields)

We consider the infinite chain of log-links
$\ldots \xrightarrow{\mathfrak{l o g}}-1^{\dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow[\rightarrow]{\log }-0^{\dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm \mathrm{ell}} \mathrm{NF}} \xrightarrow{\log }{ }^{1 \dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm \mathrm{ell}}} \mathrm{NF} \xrightarrow{\log } \ldots$.

Let $n \in \mathbb{Z}, \quad 1 \leq j \leq l^{*}$.

$\mathfrak{l o g}$-Kummer correspondences (number fields)

We consider the infinite chain of $\mathfrak{l o g}$-links

$$
\ldots \xrightarrow{\mathfrak{l o g}}-1 \dagger \mathcal{H} \mathcal{T}^{\Theta^{ \pm e \mathrm{ell}} \mathrm{NF}} \xrightarrow{\text { log }}-0 \dagger \mathcal{H} \mathcal{T}^{\Theta^{ \pm \mathrm{ell}} \mathrm{NF}} \xrightarrow{\mathfrak{l o g}}{ }^{1} \dagger \mathcal{H} \mathcal{T}^{\Theta^{ \pm \mathrm{ell}} \mathrm{NF}} \xrightarrow{\mathfrak{l o g}} \ldots .
$$

Let $n \in \mathbb{Z}, \quad 1 \leq j \leq l^{*}$. Considering ${ }^{n-1 \dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\text { log }}{ }^{n \dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l} \mathrm{NF}}$, together $w /$ the definition of Hodge theaters, we have

$$
\left({ }^{\dagger n} F_{\mathrm{mod}}\right)_{j} \hookrightarrow\left({ }^{\dagger n} F_{\mathrm{mod}}\right)_{\mathbb{S}_{j+1}^{ \pm}}^{\otimes} \hookrightarrow \prod_{v_{\mathbb{Q}} \in \mathbb{V}(\mathbb{Q})} \widetilde{k}^{\otimes}\left({ }^{\dagger n-1} \mathcal{F}_{\mathbb{S}_{j+1}^{ \pm}, v_{\mathbb{Q}}}\right)
$$

$\mathfrak{l o g}$-Kummer correspondences (number fields)

We consider the infinite chain of log-links

$$
\ldots \xrightarrow{\mathfrak{l o g}}-1 \dagger \mathcal{H} \mathcal{T}^{\Theta^{ \pm e \mathrm{ell}} \mathrm{NF}} \xrightarrow{\mathfrak{l o g}}-0 \dagger \mathcal{H} \mathcal{T}^{\Theta^{ \pm \mathrm{ell}} \mathrm{NF}} \xrightarrow{\mathfrak{l o g}}{ }^{1} \dagger \mathcal{H} \mathcal{T}^{\Theta^{ \pm \mathrm{ell}} \mathrm{NF}} \xrightarrow{\mathfrak{l o g}} \ldots .
$$

Let $n \in \mathbb{Z}, \quad 1 \leq j \leq l^{*}$. Considering ${ }^{n-1 \dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\text { log }}{ }^{n \dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l} \mathrm{NF}}$, together $w /$ the definition of Hodge theaters, we have

$$
\left({ }^{\dagger n} F_{\mathrm{mod}}\right)_{j} \hookrightarrow\left({ }^{\dagger n} F_{\mathrm{mod}}\right)_{\mathbb{S}_{j+1}^{ \pm}}^{\otimes} \hookrightarrow \prod_{v_{\mathbb{Q}} \in \mathbb{V}(\mathbb{Q})} \widetilde{k}^{\otimes}\left({ }^{\dagger n-1} \mathcal{F}_{\mathbb{S}_{j+1}^{ \pm}, v_{\mathbb{Q}}}\right)
$$

Write

$$
\left({ }^{\dagger n} F_{\mathrm{MOD}}\right)_{j} \quad \text { or } \quad\left({ }^{\dagger n} F_{\mathfrak{m o d}}\right)_{j}
$$

for this image.

$\mathfrak{l o g}$-Kummer correspondences (number fields)

We consider the infinite chain of $\mathfrak{l o g}$-links

$$
\ldots \xrightarrow{\mathfrak{l o g}}-1 \dagger \mathcal{H} \mathcal{T}^{\Theta^{ \pm \mathrm{ell}} \mathrm{NF}} \xrightarrow[\rightarrow]{\log }-0 \dagger \mathcal{H} \mathcal{T}^{\Theta^{ \pm \mathrm{ell}} \mathrm{NF}} \xrightarrow{\log }{ }^{1 \dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm \mathrm{ell}} \mathrm{NF}} \xrightarrow{\log } \ldots .
$$

Let $n \in \mathbb{Z}, \quad 1 \leq j \leq l^{*}$. Considering ${ }^{n-1 \dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\text { log }}{ }^{n \dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l} \mathrm{NF}}$, together w/ the definition of Hodge theaters, we have

$$
\left({ }^{\dagger n} F_{\mathrm{mod}}\right)_{j} \hookrightarrow\left({ }^{\dagger n} F_{\mathrm{mod}}\right)_{\mathbb{S}_{j+1}^{ \pm}}^{\otimes} \hookrightarrow \prod_{v_{\mathbb{Q}} \in \mathbb{V}(\mathbb{Q})} \widetilde{k}^{\otimes}\left({ }^{\dagger n-1} \mathcal{F}_{\mathbb{S}_{j+1}^{ \pm}, v_{\mathbb{Q}}}\right)
$$

Write

$$
\left({ }^{\dagger n} F_{\mathrm{MOD}}\right)_{j} \text { or }\left({ }^{\dagger n} F_{\mathfrak{m o d}}\right)_{j}
$$

for this image. \rightsquigarrow Using $\left({ }^{\dagger n} F_{\mathrm{MOD}}\right)_{j}$, we obtain $\left({ }^{\dagger n} \mathcal{F}_{\mathrm{MOD}}^{\circledast}\right)_{j}$

Using $\left({ }^{\dagger n} F_{\mathfrak{m o d}}\right)_{|j|}$, together $\mathrm{w} /$ the integral structure

$$
\mathcal{O}_{\tilde{k}^{\otimes}\left({ }^{\dagger n-1} \mathcal{F}_{|j|, \underline{v}}\right)} \hookrightarrow \widetilde{k}^{\otimes}\left({ }^{\dagger n-1} \mathcal{F}_{|j|, \underline{v}}\right) \hookrightarrow \widetilde{k}^{\otimes}\left({ }^{\dagger n-1} \mathcal{F}_{\mathbb{S}_{j+1}^{ \pm}, v_{\mathbb{Q}}}\right)
$$

we obtain $\left({ }^{\dagger n} \mathcal{F}_{\mathfrak{m o d}}^{\circledast}\right)_{j}$.

Using $\left({ }^{\dagger n} F_{\mathfrak{m o d}}\right)_{|j|}$, together $\mathrm{w} /$ the integral structure

$$
\mathcal{O}_{\widetilde{k}^{\otimes}(\dagger n-1} \mathcal{F}_{|j|, \underline{v})} \hookrightarrow \widetilde{k}^{\otimes}\left({ }^{\dagger n-1} \mathcal{F}_{|j|, \underline{v}}\right) \hookrightarrow \widetilde{k}^{\otimes}\left({ }^{\dagger n-1} \mathcal{F}_{\mathbb{S}_{j+1}^{ \pm}, v_{\mathbb{Q}}}\right)
$$

we obtain $\left({ }^{\dagger n} \mathcal{F}_{\mathfrak{m o d}}^{\circledast}\right)_{j} . \Longrightarrow$ nat'l isom $\left({ }^{\dagger n} \mathcal{F}_{\mathrm{MOD}}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger n} \mathcal{F}_{\mathfrak{m o d}}^{\circledast}\right)_{j}$

Using $\left({ }^{\dagger n} F_{\mathfrak{m o d}}\right)_{|j|}$, together $\mathrm{w} /$ the integral structure

$$
\mathcal{O}_{\widetilde{k}^{\otimes}\left({ }^{\dagger n-1} \mathcal{F}_{|j|, \underline{v}}\right)} \hookrightarrow \widetilde{k}^{\otimes}\left({ }^{\dagger n-1} \mathcal{F}_{|j|, \underline{v}}\right) \hookrightarrow \widetilde{k}^{\otimes}\left({ }^{\dagger n-1} \mathcal{F}_{\mathbb{S}_{j+1}^{ \pm}, v_{Q}}\right),
$$

we obtain $\left({ }^{\dagger n} \mathcal{F}_{\mathfrak{m o d}}^{\circledast}\right)_{j} . \Longrightarrow$ nat'l isom $\left({ }^{\dagger n} \mathcal{F}_{\mathrm{MOD}}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger n} \mathcal{F}_{\mathfrak{m o d}}^{\circledast}\right)_{j}$
Note: We have étale-like versions and Kummer isom.

$$
\begin{array}{ll}
\left({ }^{\dagger n} F_{\mathrm{MOD}}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger o} F_{\mathcal{D}_{\mathrm{MOD}}}\right)_{j}, & \left({ }^{\dagger n} F_{\mathfrak{m o d}}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger o} F_{\mathcal{D}_{\mathrm{mod}}}\right)_{j} \\
\left({ }^{\dagger n} \mathcal{F}_{\mathrm{MOD}}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger} \mathcal{F}_{\mathcal{D}_{\mathrm{MOD}}^{\circledast}}\right)_{j}, & \left({ }^{\dagger n} \mathcal{F}_{\mathfrak{m o d}}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger o} \mathcal{F}_{\mathcal{D}_{\mathrm{mod}}}\right)_{j} .
\end{array}
$$

Using $\left({ }^{\dagger n} F_{\mathfrak{m o d}}\right){ }_{|j|}$, together $\mathrm{w} /$ the integral structure

$$
\mathcal{O}_{\widetilde{k}^{\otimes}\left({ }^{\dagger n-1} \mathcal{F}_{|j|, \underline{v}}\right)} \hookrightarrow \widetilde{k}^{\otimes}\left({ }^{\dagger n-1} \mathcal{F}_{|j|, \underline{v}}\right) \hookrightarrow \widetilde{k}^{\otimes}\left({ }^{\dagger n-1} \mathcal{F}_{\mathbb{S}_{j+1}^{ \pm}, v_{\mathbb{Q}}}\right),
$$

we obtain $\left({ }^{\dagger n} \mathcal{F}_{\mathfrak{m o d}}^{\circledast}\right)_{j} . \Longrightarrow$ nat'l isom $\left({ }^{\dagger n} \mathcal{F}_{\mathrm{MOD}}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger n} \mathcal{F}_{\mathfrak{m o d}}^{\circledast}\right)_{j}$
Note: We have étale-like versions and Kummer isom.

$$
\begin{array}{lll}
\left({ }^{\dagger n} F_{\mathrm{MOD}}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger o} F_{\mathcal{D}_{\mathrm{MOD}}}\right)_{j}, & \left({ }^{\dagger n} F_{\mathfrak{m o d}}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger o} F_{\mathcal{D}_{\mathrm{mod}}}\right)_{j} \\
\left({ }^{\dagger n} \mathcal{F}_{\mathrm{MOD}}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger} \mathcal{F}_{\mathcal{D}_{\mathrm{MOD}}^{\circledast}}\right)_{j}, & \left({ }^{\dagger n} \mathcal{F}_{\mathfrak{m o d}}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger 0} \mathcal{F}_{\mathcal{D}_{\mathfrak{m o d}}}\right)_{j} .
\end{array}
$$

Note: Thanks to the integral str., we can compute the degrees of arith. line bdls " \in " $\left({ }^{\dagger n} \mathcal{F}_{\mathfrak{m o d}}^{\circledast}\right)_{j}$, $\left({ }^{\dagger} \mathcal{F}_{\mathcal{D}_{\mathfrak{m o d}}}^{\circledast}\right)_{j}$ by means of the log-volumes.

Write $\left(\mathcal{I}^{\otimes}\right)_{\mathbb{V}}^{\mathbb{Q}}(-) \stackrel{\text { def }}{=} \prod_{v_{\mathbb{Q}} \in \mathbb{V}(\mathbb{Q})}\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}(-)$.

Write $\left(\mathcal{I}^{\otimes}\right)_{\mathbb{V}}^{\mathbb{Q}}(-) \stackrel{\text { def }}{=} \prod_{v_{\mathbb{Q}} \in \mathbb{V}(\mathbb{Q})}\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}(-)$.

$$
\begin{aligned}
& \left({ }^{\dagger n} F_{\text {MOD }}\right)_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Kum } \downarrow_{2} \text { Kum } \downarrow_{\downarrow} \quad \text { Kum } \downarrow_{2}
\end{aligned}
$$

Write $\left(\mathcal{I}^{\otimes}\right)_{\mathbb{V}}^{\mathbb{Q}}(-) \stackrel{\text { def }}{=} \prod_{v_{\mathbb{Q}} \in \mathbb{V}(\mathbb{Q})}\left(\mathcal{I}^{\otimes}\right)^{\mathbb{Q}}(-)$.

$$
\begin{aligned}
& \left({ }^{\dagger n} F_{\mathrm{MOD}}\right) \times \\
& \left(\mathcal{I}^{\otimes}\right)_{\mathbb{V}}^{\mathbb{Q}}\left({ }^{\dagger n-1} \mathcal{F}_{\mathbb{S}_{j+1}^{ \pm}, v_{\mathbb{Q}}}\right) \xrightarrow{\log }\left(\mathcal{I}^{\otimes}\right)_{\mathbb{V}}^{\mathbb{Q}}\left({ }^{\dagger n} \mathcal{F}_{\mathbb{S}_{j+1}^{ \pm}, v_{\mathrm{Q}}}\right) \xrightarrow{\log }\left(\mathcal{I}^{\otimes}\right)_{\mathbb{V}}^{\mathbb{Q}}\left({ }^{\dagger n+1} \mathcal{F}_{\mathbb{S}_{j+1}^{ \pm}, v_{\mathbb{Q}}}\right) \xrightarrow{\log } \cdots
\end{aligned}
$$

In IUT, we consider the log-Kummer correspondence

$$
\left\{\operatorname{Kum} \circ \mathfrak{l o g}^{m}\left(\left({ }^{\dagger n} F_{\mathrm{MOD}}\right)_{j}^{\times}\right) \curvearrowright\left(\mathcal{I}^{\otimes}\right)_{\mathbb{V}}^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{D}_{\succ, \mathbb{S}_{j+1}^{ \pm}, v_{\mathbb{Q}}}\right)\right\}_{n \in \mathbb{Z}, m \in \mathbb{Z}_{\geq 0}}
$$

which is "invariant" w.r.t. the action $\mathbb{Z} \ni n \mapsto n+1 \in \mathbb{Z}$.

Note:

- The only portions of these actions that are possibly related to one another via these log-links are the indeterminacies w. r. t. multiplication by roots of unity in the domains of the log-links - cf. the following fact:

Note:

- The only portions of these actions that are possibly related to one another via these log-links are the indeterminacies w. r. t. multiplication by roots of unity in the domains of the log-links - cf. the following fact:

Fact: Let L be an NF. If $x \in L^{\times}$is unit at all places, then x is a root of unity.

Note:

- The only portions of these actions that are possibly related to one another via these log-links are the indeterminacies w. r. t. multiplication by roots of unity in the domains of the log-links - cf. the following fact:

Fact: Let L be an NF. If $x \in L^{\times}$is unit at all places, then x is a root of unity.
\Longrightarrow Indeterminacies at n that correspond - via $\mathfrak{l o g}$
to "addition by zero" at $n+1$

Note:

- The only portions of these actions that are possibly related to one another via these log-links are the indeterminacies w. r. t. multiplication by roots of unity in the domains of the log-links — cf. the following fact:

Fact: Let L be an NF. If $x \in L^{\times}$is unit at all places, then x is a root of unity.
\Longrightarrow Indeterminacies at n that correspond - via log
to "addition by zero" at $n+1 \Longrightarrow$ non-interference!
$\Theta_{\text {LGP }}^{\times \mu}-$ links
Let us recall the notion of a $\Theta_{\text {gau }}^{\times \mu}$-link (cf. [IUT2]):
(a) (loc. unit gps) $\quad G_{\underline{v}} \curvearrowright \mathcal{O}_{\overline{F_{\underline{v}}}}^{\times \mu} \mapsto G_{\underline{v}} \curvearrowright \mathcal{O}_{\overline{F_{\underline{v}}}}^{\times \mu}$
(b) (loc. val. gps) $\quad\left(\left\{\underline{\underline{q}}_{\underline{j^{2}}}\right\}_{j=1,2, \ldots, l^{*}}\right)^{\mathbb{N}} \mapsto \underline{\underline{q}}_{\underline{\mathbb{w}}}^{\mathbb{N}} \quad$ (if $\left.\underline{w} \in \underline{\mathbb{V}}^{\text {bad }}\right)$
(c) (glob. val. gps) glob. real'd Frob. \mapsto glob. real'd Frob.
$\Theta_{\text {LGP }}^{\times \mu}$-links
Let us recall the notion of a $\Theta_{\text {gau }}^{\times \mu}$-link (cf. [IUT2]):

$$
{ }^{\dagger} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l} \mathrm{NF}} \xrightarrow{\Theta_{\mathrm{gau}}^{\times \mu}} \ddagger \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l} \mathrm{NF}} ; \quad{ }^{\dagger} \mathcal{F}_{\text {gau }}^{\mid-\mu \times \mu} \xrightarrow[\rightarrow]{\sim}{ }^{\ddagger} \mathfrak{F} \triangle \times \mu
$$

(a) (loc. unit gps) $\quad G_{\underline{v}} \curvearrowright \mathcal{O}_{\overline{F_{\underline{v}}}}^{\times \mu} \mapsto G_{\underline{v}} \curvearrowright \mathcal{O}_{\overline{F_{\underline{v}}}}^{\times \mu}$
(b) (loc. val. gps) $\quad\left(\left\{\underline{\underline{q}}_{\underline{j^{2}}}\right\}_{j=1,2, \ldots, l^{*}}\right)^{\mathbb{N}} \mapsto \underline{\underline{q}}_{\underline{w}}^{\mathbb{N}} \quad$ (if $\left.\underline{w} \in \underline{\mathbb{V}}^{\text {bad }}\right)$
(c) (glob. val. gps) glob. real'd Frob. \mapsto glob. real'd Frob.

We consider two infinite chains of $\mathfrak{l o g}$-links

$$
\begin{aligned}
& \cdots \xrightarrow{\text { log }}{ }^{\dagger-1} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\text { log }}{ }^{\dagger 0} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l} \mathrm{NF}} \xrightarrow{\text { log }}{ }^{\dagger 1} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l} \mathrm{NF}} \xrightarrow{\text { log }} \cdots \\
& \cdots \xrightarrow{\mathrm{log}^{\ddagger-1} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\text { log }}{ }^{\ddagger 0} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF} \xrightarrow{\text { log }}{ }^{\ddagger 1} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l} \mathrm{NF}} \xrightarrow{\text { log }} \cdots}
\end{aligned}
$$

Replacing the data in the left-hand side of (a), (b) (resp. (c)) by the data arise from $\left\{{ }^{\dagger 0} \Psi_{\mathcal{F}_{\mathrm{LGP}}, \underline{w}}\right\}_{\underline{w} \in \underline{\mathbb{V}}} \quad\left(\right.$ resp. $\left.\quad\left({ }^{\dagger 0} \mathcal{F}_{\text {mod }}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger 0} \mathcal{F}_{\mathrm{MOD}}^{\circledast}\right)_{j}\right)$, we obtain the $\Theta_{\mathrm{LGP}}^{\times \mu}$-link

$$
{ }^{\dagger 0} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e \mathrm{ell}} \mathrm{NF}} \quad \stackrel{\Theta_{\mathrm{LGP}}^{\times \mu}}{\rightarrow} \quad \ddagger 0 \mathcal{H} \mathcal{T}^{\Theta^{ \pm \mathrm{ell}} \mathrm{NF}} ; \quad{ }^{\dagger 0} \mathfrak{F}_{\mathrm{LGP}}^{\|>\boldsymbol{\mu}} \quad \xrightarrow{\sim}{ }^{\ddagger 0} \mathfrak{F}_{\triangle}^{\|>\times \boldsymbol{\mu}}
$$

Replacing the data in the left-hand side of (a), (b) (resp. (c)) by the data arise from $\left\{{ }^{\dagger 0} \Psi_{\mathcal{F}_{\mathrm{LGP}}, \underline{w}}\right\}_{\underline{w} \in \mathbb{V}} \quad\left(\right.$ resp. $\left.\left({ }^{\dagger 0} \mathcal{F}_{\text {mod }}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger 0} \mathcal{F}_{\mathrm{MOD}}^{\circledast}\right)_{j}\right)$, we obtain the $\Theta_{\mathrm{LGP}}^{\times \mu}$-link

$$
{ }^{\dagger 0} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e \mathrm{ell}} \mathrm{NF}} \xrightarrow{\Theta_{\mathrm{LGP}}^{\times \mu}}{ }^{\ddagger 0} \mathcal{H} \mathcal{T}^{\Theta^{ \pm \mathrm{ell}} \mathrm{NF}} ; \quad{ }^{\dagger 0} \mathfrak{F}_{\mathrm{LGP}}^{\|>} \times \boldsymbol{\mu} \xrightarrow{\sim}{ }^{\ddagger 0} \mathfrak{F}_{\triangle}^{\|-\boldsymbol{\sim}} \times \boldsymbol{\mu} .
$$

Note: Then we have

- objects of (c) in ${ }^{\dagger 0} \mathcal{F}_{\text {LGP }}^{\|-\boldsymbol{\wedge}}$ det'd by " $\left\{\underline{q}_{\underline{q^{2}}}\right\}_{j=1,2, \ldots, l^{*} ; \underline{w} \in \underline{\mathbb{V}}^{\text {bad }}}$ " which we shall refer to as Θ-pilot objects
- objects of (c) in ${ }^{\ddagger 0} \mathfrak{F}_{\triangle}^{\|-\boldsymbol{\mu}}$ det'd by " $\left\{\underline{\underline{q}} \underline{\underline{w}}^{\}_{\underline{w} \in \underline{\mathbb{V}}^{\text {bad }}} \text { " }}\right.$ which we shall refer to as q-pilot objects

Replacing the data in the left-hand side of (a), (b) (resp. (c)) by the data arise from $\left\{{ }^{\dagger 0} \Psi_{\mathcal{F}_{\mathrm{LGP}}, \underline{w}}\right\}_{\underline{w} \in \mathbb{V}} \quad$ (resp. $\left.\left({ }^{\dagger 0} \mathcal{F}_{\text {mod }}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger 0} \mathcal{F}_{\mathrm{MOD}}^{\circledast}\right)_{j}\right)$, we obtain the $\Theta_{\mathrm{LGP}}^{\times \mu}$-link

$$
{ }^{\dagger 0} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e \mathrm{ell}} \mathrm{NF}} \xrightarrow{\Theta_{\mathrm{LGP}}^{\times \mu}}{ }^{\ddagger 0} \mathcal{H} \mathcal{T}^{\Theta^{ \pm \mathrm{ell}} \mathrm{NF}} ; \quad{ }^{\dagger 0} \mathfrak{F}_{\mathrm{LGP}}^{\|>} \times \boldsymbol{\mu} \xrightarrow{\sim}{ }^{\ddagger 0} \mathfrak{F}_{\triangle}^{\|-\boldsymbol{\sim}} \times \boldsymbol{\mu} .
$$

Note: Then we have

- objects of (c) in ${ }^{\dagger 0} \mathcal{F}_{\text {LGP }}^{\|>\boldsymbol{\mu}}$ det'd by " $\left\{\underline{\underline{q}}_{\underline{j^{2}}}\right\}_{j=1,2, \ldots, l^{*} ; \underline{w} \in \underline{\mathbb{V}}^{\text {bad }}}$ " which we shall refer to as Θ-pilot objects
- objects of (c) in ${ }^{\ddagger 0} \mathfrak{F}_{\triangle}^{\|-\mu}$ det'd by " $\left\{\underline{\underline{q}}_{\underline{w}}\right\}_{\underline{w} \in \underline{\mathbb{V}}^{\text {bad }}}$ " which we shall refer to as q-pilot objects
\Longrightarrow The $\Theta_{\text {LGP }}^{\times \mu}$-link maps Θ-pilots object to q-pilot objects.

Multiradial algorithms via LGP-monoids/Frobenioids

(i) (multiradial representation) ${ }^{\dagger 0} \mathfrak{R}_{\text {LGP }}$ is a collection as follows:

Multiradial algorithms via LGP-monoids/Frobenioids

(i) (multiradial representation) ${ }^{\dagger} \mathfrak{R}_{\text {LGP }}$ is a collection as follows:
(a) For $\mathbb{V} \ni \underline{v} \mid v_{\mathbb{Q}} \in \mathbb{V}(\mathbb{Q}), 1 \leq j \leq l^{ \pm}$, the mono-an. ét-like log-shells

$$
\mathcal{I}^{\otimes}\left({ }^{\dagger 0} \mathcal{D}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}^{\vdash}\right), \quad \mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j}^{+}, v}^{\vdash}\right),
$$

and the (procession-normalized) log-volumes on them.

Multiradial algorithms via LGP-monoids/Frobenioids

(i) (multiradial representation) ${ }^{\dagger}{ }^{\circ} \mathfrak{R}_{\text {LGP }}$ is a collection as follows:
(a) For $\mathbb{V} \ni \underline{v} \mid v_{\mathbb{Q}} \in \mathbb{V}(\mathbb{Q}), 1 \leq j \leq l^{ \pm}$, the mono-an. ét-like log-shells

$$
\mathcal{I}^{\otimes}\left({ }^{\dagger 0} \mathcal{D}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}^{\vdash}\right), \quad \mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j}^{+}, v}^{\vdash}\right),
$$

and the (procession-normalized) log-volumes on them.
(b) For $\underline{v} \in \underline{\mathbb{V}}^{\text {bad }}$, the ét-like splitting monoid

$$
{ }^{\dagger} \Psi^{\perp} \mathcal{D}_{\mathrm{LGP}, \underline{v}} \curvearrowright\left(\left(\mathcal{I}^{\otimes}\right)_{J}^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{D}_{\succ, \mathbb{S}_{j+1}, \underline{v}}\right) \xrightarrow{\sim}\right)\left(\mathcal{I}^{\otimes}\right)_{J}^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j+1}^{ \pm}, \underline{v}}^{\vdash}\right)
$$

Multiradial algorithms via LGP-monoids/Frobenioids

(i) (multiradial representation) ${ }^{\dagger}{ }^{\circ} \mathfrak{R}_{\text {LGP }}$ is a collection as follows:
(a) For $\mathbb{V} \ni \underline{v} \mid v_{\mathbb{Q}} \in \mathbb{V}(\mathbb{Q}), 1 \leq j \leq l^{ \pm}$, the mono-an. ét-like log-shells

$$
\mathcal{I}^{\otimes}\left({ }^{\dagger 0} \mathcal{D}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}^{\vdash}\right), \quad \mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j}^{ \pm}, v}^{\vdash}\right),
$$

and the (procession-normalized) log-volumes on them.
(b) For $\underline{v} \in \underline{\mathbb{V}}^{\text {bad }}$, the ét-like splitting monoid

$$
{ }^{\dagger} \Psi^{\mathcal{D}_{\mathrm{LGP}, \underline{v}}} \stackrel{\perp}{ }\left(\left(\mathcal{I}^{\otimes}\right)_{J}^{\mathbb{Q}}\left(\dagger^{\dagger} \mathcal{D}_{\succ, \mathbb{S}_{j+1}, \underline{v}}\right) \xrightarrow{\sim}\right)\left(\mathcal{I}^{\otimes}\right)_{J}^{\mathbb{Q}}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j+1}^{ \pm}, \underline{v}}^{\vdash}\right)
$$

(c) For $1 \leq j \leq l^{ \pm}$, the ét-like number field
$\left({ }^{\dagger 0} F_{\mathcal{D}_{\mathrm{MOD}}}\right)_{j}=\left({ }^{\dagger 0} F_{\mathcal{D}_{\mathrm{mod}}}\right)_{j} \curvearrowright\left(\left(\mathcal{I}^{\otimes}\right)_{\mathbb{V}}^{\mathbb{Q}}\left({ }^{\dagger 0} \mathcal{D}_{\succ, \mathbb{S}_{j+1}^{ \pm}, v_{\mathbb{Q}}}\right) \xrightarrow{\sim}\right)\left(\mathcal{I}^{\otimes}\right)_{\mathbb{V}}^{\mathbb{Q}}\left({ }^{\dagger 0} \mathcal{D}_{\mathbb{S}_{j+1}^{ \pm}, v_{\mathbb{Q}}}^{\vdash}\right)$,
and the ét-like Frobenioids

$$
\left({ }^{\dagger \circ} \mathcal{F}_{\mathcal{D}_{\mathrm{MOD}}^{\circledast}}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger \circ} \mathcal{F}_{\mathcal{D}_{\mathrm{mod}}}^{\circledast}\right)_{j}
$$

and the ét-like Frobenioids

$$
\left({ }^{\dagger} \mathcal{F}_{\mathcal{D}_{\mathrm{MOD}}}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger \circ} \mathcal{F}_{\mathcal{D}_{\mathrm{mod}}}^{\circledast}\right)_{j}
$$

If we regard these data (a), (b), (c) up to the indeterminacies
and the ét-like Frobenioids

$$
\left({ }^{\dagger} \mathcal{F}_{\mathcal{D}_{\mathrm{MOD}}}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger} \mathcal{F}_{\mathcal{D}_{\mathrm{mod}}}^{\circledast}\right)_{j}
$$

If we regard these data (a), (b), (c) up to the indeterminacies

- (Ind1) — which arises from the aut of proc. of \mathcal{D}^{\vdash}-prime-strips
- (Ind2) - which arises from the aut of $\mathcal{F}^{\vdash \times \mu}$-prime-strips
and the ét-like Frobenioids

$$
\left({ }^{\dagger} \mathcal{F}_{\mathcal{D}_{\mathrm{MOD}}}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger} \mathcal{F}_{\mathcal{D}_{\mathrm{mod}}}^{\circledast}\right)_{j}
$$

If we regard these data (a), (b), (c) up to the indeterminacies

- (Ind1) - which arises from the aut of proc. of \mathcal{D}^{\vdash}-prime-strips
- (Ind2) - which arises from the aut of $\mathcal{F}^{\vdash \times \mu}$-prime-strips then we have ${ }^{\dagger o} \Re_{\text {LGP }} \xrightarrow{\sim} \ddagger \Re_{\text {LGP }}$.
and the ét-like Frobenioids

$$
\left({ }^{\dagger} \mathcal{F}_{\mathcal{D}_{\mathrm{MOD}}}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger} \mathcal{F}_{\mathcal{D}_{\mathrm{mod}}}^{\circledast}\right)_{j}
$$

If we regard these data (a), (b), (c) up to the indeterminacies

- (Ind1) - which arises from the aut of proc. of \mathcal{D}^{\vdash}-prime-strips
- (Ind2) - which arises from the aut of $\mathcal{F}^{\vdash \times \mu}$-prime-strips then we have ${ }^{\dagger o} \mathfrak{R}_{\text {LGP }} \xrightarrow{\sim} \ddagger \Re_{\text {LGP }}$.
(ii) (log-Kummer correspondence) For $n \in \mathbb{Z}$, we have the Kum. isoms
(a) For $\mathbb{V} \ni \underline{v} \mid v_{\mathbb{Q}} \in \mathbb{V}(\mathbb{Q}), 1 \leq j \leq l^{ \pm}$,

$$
\begin{aligned}
& \mathcal{I}^{\otimes}\left({ }^{\dagger n} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}\right) \xrightarrow{\sim} \mathcal{I}^{\otimes}\left({ }^{\dagger n} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, v_{\mathbb{Q}}}^{\vdash \times \boldsymbol{\mu}}\right) \xrightarrow{\sim} \mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j}^{+}, v_{\mathbb{Q}}}^{\vdash}\right), \\
& \mathcal{I}^{\otimes}\left({ }^{\dagger n} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}\right) \xrightarrow{\sim} \mathcal{I}^{\otimes}\left({ }^{\dagger n} \mathcal{F}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}^{\vdash \times \boldsymbol{\mu}}\right) \xrightarrow{\sim} \mathcal{I}^{\otimes}\left({ }^{\dagger} \mathcal{D}_{\mathbb{S}_{j}^{ \pm}, \underline{v}}^{\vdash}\right)
\end{aligned}
$$

which are comp. w/ the respective log-volumes
which are comp. w/ the respective log-volumes
(b) For $\underline{v} \in \mathbb{V}^{\text {bad }}$,

$$
{ }^{\dagger n} \Psi \stackrel{\mathcal{F}}{\mathrm{LGP}, \underline{v}}^{\sim}{ }^{\dagger \dagger} \Psi_{\mathcal{D}_{\mathrm{LGP}}, \underline{v}}^{\perp}
$$

which are comp. w/ the respective log-volumes
(b) For $\underline{v} \in \mathbb{\mathbb { V }}^{\text {bad }}$,

$$
{ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}}^{\perp} \stackrel{\sim}{\rightarrow}^{\dagger} \Psi^{\circ} \stackrel{\mathcal{D}}{\mathrm{LGP},}, \underline{v}^{\perp}
$$

(c) For $1 \leq j \leq l^{ \pm}$,

$$
\begin{array}{lll}
\left({ }^{\dagger n} F_{\mathrm{MOD}}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger 0} F_{\mathcal{D}_{\mathrm{MOD}}}\right)_{j}, & \left({ }^{\dagger n} F_{\mathfrak{m o d}}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger 0} \mathcal{F}_{\mathcal{D}_{\mathfrak{m o d}}}\right)_{j} \\
\left({ }^{\dagger n} \mathcal{F}_{\mathrm{MOD}}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger 0} \mathcal{F}_{\mathcal{D}_{\mathrm{MOD}}}^{\circledast}\right)_{j}, & \left({ }^{\dagger n} \mathcal{F}_{\mathfrak{m o d}}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger o} \mathcal{F}_{\mathcal{D}_{\mathfrak{m o d}}}^{\circledast}\right)_{j}
\end{array}
$$

which are comp. w/ the respective log-volumes
(b) For $\underline{v} \in \underline{\mathbb{V}}^{\text {bad }}$,

$$
{ }^{\dagger n} \Psi_{\mathcal{F}_{\mathrm{LGP}, \underline{v}}}^{\perp} \stackrel{\sim}{\rightarrow}{ }^{\dagger} \Psi_{\mathcal{D}_{\mathrm{LGP}}, \underline{v}}^{\perp}
$$

(c) For $1 \leq j \leq l^{ \pm}$,

$$
\begin{array}{lll}
\left({ }^{\dagger n} F_{\mathrm{MOD}}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger o} F_{\mathcal{D}_{\mathrm{MOD}}}\right)_{j}, & \left({ }^{\dagger n} F_{\mathfrak{m o d}}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger o} \mathcal{F}_{\mathcal{D}_{\mathfrak{m o d}}}\right)_{j} \\
\left({ }^{\dagger n} \mathcal{F}_{\mathrm{MOD}}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger o} \mathcal{F}_{\mathcal{D}_{\mathrm{MOD}}}^{\circledast}\right)_{j}, & \left({ }^{\dagger n} \mathcal{F}_{\mathfrak{m o d}}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger o} \mathcal{F}_{\mathcal{D}_{\mathrm{mod}}}^{\circledast}\right)_{j}
\end{array}
$$

Note:

- As one varies $n \in \mathbb{Z}$, the various isoms of (b) and of the first line of (c) are compatible. (\Longrightarrow compatibility concerning "MOD")
- By allowing (Ind3), as one varies $n \in \mathbb{Z}$, the various isoms of (a) are compatible.
which are comp. w/ the respective log-volumes
(b) For $\underline{v} \in \underline{\mathbb{V}}^{\text {bad }}$,

$$
{ }^{\dagger n} \Psi \stackrel{\mathcal{F}}{\mathrm{LGP},}, \underline{v}_{\perp}^{\sim}{ }^{\dagger \dagger} \Psi \Psi_{\mathcal{D}_{\mathrm{LGP}}, \underline{v}}^{\perp}
$$

(c) For $1 \leq j \leq l^{ \pm}$,

$$
\begin{array}{lll}
\left({ }^{\dagger n} F_{\mathrm{MOD}}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger o} F_{\mathcal{D}_{\mathrm{MOD}}}\right)_{j}, & \left({ }^{\dagger n} F_{\mathrm{mod}}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger 0} F_{\mathcal{D}_{\mathrm{mod}}}\right)_{j} \\
\left({ }^{\dagger n} \mathcal{F}_{\mathrm{MOD}}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger 0} \mathcal{F}_{\mathcal{D}_{\mathrm{MOD}}}^{\circledast}\right)_{j}, & \left({ }^{\dagger n} \mathcal{F}_{\mathfrak{m o d}}^{\circledast}\right)_{j} \xrightarrow{\sim}\left({ }^{\dagger 0} \mathcal{F}_{\mathcal{D}_{\mathrm{mod}}}^{\circledast}\right)_{j}
\end{array}
$$

Note:

- As one varies $n \in \mathbb{Z}$, the various isoms of (b) and of the first line of (c) are compatible. (\Longrightarrow compatibility concerning "MOD")
- By allowing (Ind3), as one varies $n \in \mathbb{Z}$, the various isoms of (a) are compatible.
(iii) The isoms of (ii) are "comp." $w /{ }^{\dagger 0} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l}} \mathrm{NF} \stackrel{\Theta_{\mathrm{LGP}}^{\times \mu}}{\ddagger}{ }^{\ddagger 0} \mathcal{H} \mathcal{T}^{\Theta^{ \pm e l l} \mathrm{NF}}$.

Log-volume estimates for Θ-pilot objects

Corollary
Write

$$
-|\log (\underline{\underline{\Theta}})| \in \mathbb{R} \cup\{\infty\}
$$

for the (process.-normalized, mono-an.) log-volume of the "holomorphic hull" of the union of the possible images of a Θ-pilot object, rel. to the relevant Kum. isoms, in the multira'l rep'n of the previous (i), which we regard as sub. to (Ind1), (Ind2), (Ind3);

Log-volume estimates for Θ-pilot objects

Corollary
Write

$$
-|\log (\underline{\underline{\Theta}})| \in \mathbb{R} \cup\{\infty\}
$$

for the (process.-normalized, mono-an.) log-volume of the "holomorphic hull" of the union of the possible images of a Θ-pilot object, rel. to the relevant Kum. isoms, in the multira'l rep'n of the previous (i), which we regard as sub. to (Ind1), (Ind2), (Ind3);

$$
-|\log (\underline{\underline{q}})| \in \mathbb{R}
$$

for the (process.-normalized, mono-an.) log-volume of the image of a q-pilot object, rel. to the relevant Kum. isoms, in the multirad'l rep'n.

Log-volume estimates for Θ-pilot objects

Corollary
Write

$$
-|\log (\underline{\underline{\Theta}})| \in \mathbb{R} \cup\{\infty\}
$$

for the (process.-normalized, mono-an.) log-volume of the "holomorphic hull" of the union of the possible images of a Θ-pilot object, rel. to the relevant Kum. isoms, in the multira'l rep'n of the previous (i), which we regard as sub. to (Ind1), (Ind2), (Ind3);

$$
-|\log (\underline{\underline{q}})| \in \mathbb{R}
$$

for the (process.-normalized, mono-an.) log-volume of the image of a q-pilot object, rel. to the relevant Kum. isoms, in the multirad'l rep'n.

Then it holds that $-|\log (\underline{\underline{\Theta}})| \in \mathbb{R}$, and $-|\log (\underline{\underline{\Theta}})| \geq-|\log (\underline{\underline{q}})|$.

